Patents Assigned to Signa Chemistry, Inc.
  • Patent number: 10309204
    Abstract: Methods of stimulating enhanced oil recovery from a post-cold heavy oil production with sand (“CHOPS”) oil-bearing formation are disclosed. The invention relates to a method of stimulating oil recovery from a post-cold heavy oil production with sand (CHOPS) oil-bearing formation. The method optionally flushes a wellbore in a post-CHOPS oil-bearing formation having at least one worm hole to expel water from the wellbore and near wellbore region; then injects a alkali metal silicide into the post-oil-bearing formation via a wellbore to introduce the alkali metal silicide into at least one worm hole within the post-oil-bearing formation. The injection step is followed by reacting the injected alkali metal silicide to stimulate oil flow within the post-CHOPS oil-bearing formation; and recovering oil from the post-CHOPS oil-bearing formation. The alkali metal silicide dispersion can also be injected into the formation in a cyclic mode of alternating injection, soak, and production periods.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: June 4, 2019
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, Michael Lefenfeld, Gregory Arthur Romney, Muhammad Imran, Kelvin Dean Knorr
  • Patent number: 10240443
    Abstract: A process for altering a wettability characteristic of a carbonate formation to stimulate oil production includes selecting an oil bearing carbonate formation, injecting a silicide dispersion into the carbonate formation, and reacting the injected silicide dispersion with water. The reaction alters the wettability characteristic of the carbonate formation toward water wettability. The silicide dispersion can include an alkali metal silicide, such as sodium silicide. The reaction generates hydrogen, silicate, and heat that pressurizes the carbonate formation with the generated hydrogen, heats the carbonate formation with the generated heat, and reduces the viscosity of the hydrocarbons in the carbonate formation with the generated silicate. The reaction re-mineralizes the surfaces in the carbonate formation and alters the wettability characteristics of the carbonate formation as a calcium-silicon phase is formed. The hydrocarbons are recovered from the carbonate formation with a production well.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: March 26, 2019
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, Michael Lefenfeld, Gregory Arthur Romney, Muhammad Imran, Kelvin Dean Knorr, Ralph George Jonasson
  • Patent number: 10024500
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 17, 2018
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Publication number: 20170336032
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: August 9, 2017
    Publication date: November 23, 2017
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael LEFENFELD
  • Patent number: 9791108
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: October 17, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Publication number: 20170234489
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael LEFENFELD
  • Patent number: 9677392
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The aqueous fluid comprises water. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 13, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Patent number: 9657549
    Abstract: Enhanced oil recovery techniques include introduction of alkali metal silicides into subterranean reservoirs to generate hydrogen gas, heat, and alkali metal silicate solutions in situ upon contact with water. The alkali metal silicides, such as sodium silicide, are used to recover hydrocarbons, including heavier crudes where viscosity and low reservoir pressure are limiting factors. Hydrogen, which is miscible with the crude oil and can beneficiate the heavier fractions into lighter fractions naturally or with addition of catalytic materials, is generated in-situ. It. Heat is also generated at the reaction site to reduce viscosity and promote crude beneficiation. The resulting alkaline silicate solution saponifies acidic crude components to form surfactants which emulsify the crude to improve mobility toward a production well. The silicate promotes profile modification passively via consumptive reactions or actively via addition of acidic gelling agents.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 23, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, James S. Falcone, Michael Lefenfeld
  • Patent number: 9494012
    Abstract: The invention relates to cement compositions containing a metal silicide such as an alkali metal silicide or an alkaline earth metal silicide. Upon mixing with water, the metal silicide reacts to generate hydrogen gas, a silicate, and heat—each of which is advantageous for the large variety of uses to which cements are put. The invention relates to a foamable cement composition comprising about 99.999 wt % to about 98.5 wt % of a cement, and about 0.001 wt % to about 1.5 wt % of a metal silicide or a mixture of metal silicides. Concretes and grouts containing the cement composition are also disclosed. Other embodiments provide methods for forming cement structures, including in subterranean formations and wells.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 15, 2016
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: James S. Falcone, Paul H. Krumrine, Michael Lefenfeld
  • Publication number: 20160265328
    Abstract: A process for altering a wettability characteristic of a carbonate formation to stimulate oil production includes selecting an oil bearing carbonate formation, injecting a silicide dispersion into the carbonate formation, and reacting the injected silicide dispersion with water. The reaction alters the wettability characteristic of the carbonate formation toward water wettability. The silicide dispersion can include an alkali metal silicide, such as sodium silicide. The reaction generates hydrogen, silicate, and heat that pressurizes the carbonate formation with the generated hydrogen, heats the carbonate formation with the generated heat, and reduces the viscosity of the hydrocarbons in the carbonate formation with the generated silicate. The reaction re-mineralizes the surfaces in the carbonate formation and alters the wettability characteristics of the carbonate formation as a calcium-silicon phase is formed. The hydrocarbons are recovered from the carbonate formation with a production well.
    Type: Application
    Filed: October 17, 2014
    Publication date: September 15, 2016
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, Michael LEFENFELD, Gregory Arthur ROMNEY, Muhammad IMRAN, Kelvin Dean KNORR, Ralph George JONASSON
  • Patent number: 9409832
    Abstract: A catalytic process for dehydration of an aliphatic C2-C6 alcohol to its corresponding olefin is disclosed. The process continuously flows through a reaction zone a liquid phase containing an aliphatic C2-C6 alcohol to contact a non-volatile acid catalyst at a reaction temperature and pressure to at least partially convert the aliphatic C2-C6 alcohol in the liquid phase to its corresponding olefin. The reaction pressure is greater than atmospheric pressure and the reaction temperature is above the boiling point of the olefin at reaction pressure, but below the critical temperature of the alcohol, and the olefin product is substantially in the gaseous phase. After the contacting step, the olefin containing gaseous phase is separated from the liquid phase. The invention also relates to catalytic processes such as a hydrolysis of an olefin to an alcohol, an esterification, a transesterification, a polymerization, an aldol condensation or an ester hydrolysis.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: August 9, 2016
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Michael Lefenfeld, Robert Hoch
  • Publication number: 20160008798
    Abstract: The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
    Type: Application
    Filed: March 25, 2015
    Publication date: January 14, 2016
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Michael LEFENFELD, Robert RAJA, Alexander James PATERSON, Matthew Edward POTTER
  • Publication number: 20150191993
    Abstract: The invention relates to cement compositions containing a metal silicide such as an alkali metal silicide or an alkaline earth metal silicide. Upon mixing with water, the metal silicide reacts to generate hydrogen gas, a silicate, and heat—each of which is advantageous for the large variety of uses to which cements are put. The invention relates to a foamable cement composition comprising about 99.999 wt % to about 98.5 wt % of a cement, and about 0.001 wt % to about 1.5 wt % of a metal silicide or a mixture of metal silicides. Concretes and grouts containing the cement composition are also disclosed. Other embodiments provide methods for forming cement structures, including in subterranean formations and wells.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 9, 2015
    Applicant: SiGNa Chemistry, Inc.
    Inventors: James S. Falcone, Paul H. Krumrine, Michael Lefenfeld
  • Patent number: 9040741
    Abstract: A catalytic process for dehydration of an aliphatic C2-C6 alcohol to its corresponding olefin is disclosed. The process continuously flows through a reaction zone a liquid phase containing an aliphatic C2-C6 alcohol to contact a non-volatile acid catalyst at a reaction temperature and pressure to at least partially convert the aliphatic C2-C6 alcohol in the liquid phase to its corresponding olefin. The reaction pressure is greater than atmospheric pressure and the reaction temperature is above the boiling point of the olefin at reaction pressure, but below the critical temperature of the alcohol, and the olefin product is substantially in the gaseous phase. After the contacting step, the olefin containing gaseous phase is separated from the liquid phase. The invention also relates to catalytic processes such as a hydrolysis of an olefin to an alcohol, an esterification, a transesterification, a polymerization, an aldol condensation or an ester hydrolysis.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 26, 2015
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Michael Lefenfeld, Robert Hoch
  • Patent number: 9012709
    Abstract: The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: April 21, 2015
    Assignee: Signa Chemistry, Inc.
    Inventors: Michael Lefenfeld, Robert Raja, Alexander James Paterson, Matthew Edward Potter
  • Publication number: 20140335013
    Abstract: The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 13, 2014
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Michael LEFENFELD, Robert RAJA, Alexander James PATERSON, Michael Edward POTTER
  • Publication number: 20140306153
    Abstract: The invention relates to lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide. In formula RLi, R is an alkyl group, an alkenyl group, an alkyny group, an aryl group, an alkaryl group, or an NR1R2 group; R1 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkaryl group; and R2 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and an alkaryl group. The preparation and use of lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide compositions are also described.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 16, 2014
    Applicants: SIGNA CHEMISTRY, INC., BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Michael LEFENFELD, James L. DYE, Partha NANDI, James JACKSON
  • Publication number: 20140196896
    Abstract: Enhanced oil recovery techniques include introduction of alkali metal silicides into subterranean reservoirs to generate hydrogen gas, heat, and alkali metal silicate solutions in situ upon contact with water. The alkali metal silicides, such as sodium silicide, are used to recover hydrocarbons, including heavier crudes where viscosity and low reservoir pressure are limiting factors. Hydrogen, which is miscible with the crude oil and can beneficiate the heavier fractions into lighter fractions naturally or with addition of catalytic materials, is generated in-situ. It. Heat is also generated at the reaction site to reduce viscosity and promote crude beneficiation. The resulting alkaline silicate solution saponifies acidic crude components to form surfactants which emulsify the crude to improve mobility toward a production well. The silicate promotes profile modification passively via consumptive reactions or actively via addition of acidic gelling agents.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 17, 2014
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, James S. Falcone, Michael Lefenfeld
  • Patent number: 8759599
    Abstract: The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: June 24, 2014
    Assignee: Signa Chemistry, Inc.
    Inventors: Michael Lefenfeld, Robert Raja, Alexander James Paterson, Matthew Edward Potter
  • Patent number: 8632928
    Abstract: A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 21, 2014
    Assignee: Signa Chemistry, Inc.
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld