Abstract: A process for curing a natural or synthetic rubber includes the measuring of curing conditions by dielectric or impedance means to produce a process curve (impedance property data versus time) followed by analyzing the process curve with a software algorithm which defines and statistically quantifies the correlation between the process curve and the desired part properties. The correlation relationship is applied in real time to end the curing process at the optimum time and to produce rubber parts of uniform quality and with reduced process cycle time.
Type:
Grant
Filed:
October 8, 2002
Date of Patent:
February 15, 2005
Assignee:
Signature Control Systems
Inventors:
John C. Van Doren, Richard Magill, Bruce Sellers, Tim Erickson, Scott Schnieder, Steve Courington, Lance Bethel
Abstract: A method and system for analyzing the state of a dielectric material is disclosed. The dielectric material is determined to be in a state, S, by determining a similarity or dissimilarity between: (a) a first set of impedance values derived from excitation of a capacitor having the dielectric material disposed between electrodes for the capacitor, and (b) a second set of predetermined corresponding impedance values indicative of the state S. For each of a plurality of electrical frequencies, there are corresponding impedance values in the first and second sets. Each such impedance values is one of a conductance and a capacitance value for the dielectric material. Thus, within a time period sufficiently short so that the dielectric material is expected to remain in a same state throughout the time period, each of the electrical frequencies is used to excite the capacitor, and corresponding response impedance values are derived that provide an impedance “snap shot” of the dielectric material.
Abstract: A process for curing a natural or synthetic rubber includes the measuring of curing conditions by dielectric or impedance means to produce a process curve (impedance property data versus time) followed by analyzing the process curve with a software algorithm which defines and statistically quantifies the correlation between the process curve and the desired part properties. The correlation relationship is applied in real time to end the curing process at the optimum time and to produce rubber parts of uniform quality and with reduced process cycle time.
Type:
Application
Filed:
September 18, 2003
Publication date:
July 8, 2004
Applicant:
Signature Control Systems
Inventors:
John C. Van Doren, Richard Magill, Bruce Sellers, Tim Erickson, Scott Schneider, Steve Courington, Lance Bethel
Abstract: A process for curing a natural or synthetic rubber includes the measuring of curing conditions by dielectric or impedance means to produce a process curve (impedance property data versus time) followed by analyzing the process curve with a software algorithm which defines and statistically quantifies the correlation between the process curve and the desired part properties. The correlation relationship is applied in real time to end the curing process at the optimum time and to produce rubber parts of uniform quality and with reduced process cycle time.
Type:
Application
Filed:
October 8, 2002
Publication date:
January 15, 2004
Applicant:
Signature Control Systems
Inventors:
John C. Van Doren, Richard Magill, Bruce Sellers, Tim Erickson, Scott Schnieder, Steve Courington, Lance Bethel
Abstract: A system and method for operating a distributed control network for irrigation management. The system incorporates several irrigation controllers wherein each of the controllers can transmit, receive and respond to commands initiated by any device or satellite controller on the network, a communication bus that is connected to the controllers, a central computer that is connected to the bus, several sensing devices that are connected to each controller, and several sprinkler valves that are connected to each controller. The controllers can be operated in local mode via a user interface and in a remote mode via a wireless connection. The controllers are capable of monitoring and acknowledging the commands that are transmitted on the bus.