Patents Assigned to Silicon Line GmbH
  • Publication number: 20140369366
    Abstract: On the basis of single-ended signals based on logic levels, and of differential, in particular common-mode-based, signals, a circuit arrangement and a corresponding method are proposed, in which a serialized signal transmission is always performed in an error-free and stable manner.
    Type: Application
    Filed: February 14, 2014
    Publication date: December 18, 2014
    Applicant: SILICON LINE GMBH
    Inventors: Thomas BLON, Thomas SUTTORP, Holger HOELTKE
  • Patent number: 8855154
    Abstract: Circuit arrangement or circuit, in particular driver circuit, and a method for controlling at least one light-emitting component, such as an electro-optical transducer, a light-emitting diode (LED), an electroluminescent diode, a laser, or a semiconductor laser, by switching a switching element between a first switching position and a second switching position, and the voltage supply is effected by a supply element, such as a voltage source or a current source supported by a decoupling capacitor on the output side, so that current drain and output resistance are as low as possible, so that the highest possible frequency or switching speed as well as the highest possible output voltage for the light-emitting component can be achieved, the light-emitting component is controlled by varying its operating voltage, in particular by switching between the switching positions, and the first and second switching positions are of low impedance for the operating frequency.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 7, 2014
    Assignee: SILICON LINE GmbH
    Inventors: Martin Groepl, Holger Hoeltke
  • Patent number: 8824898
    Abstract: For providing circuit arrangement and method for transmitting signals from a data source to a data sink, the signals being TMDS encoded, the driver circuit is supplied by a connection interface, connected upstream, assigned to data source, with supply voltage, electrical TMDS encoded signals are electro-optically converted by an LED connected downstream of the driver circuit and coupled into an optical fiber as light supplied with TMDS encoded signals, the direct current portion supplied from TMDS transmitter to connection interface, to data source, is converted by driver circuit to a modulated signal current for controlling LED.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: September 2, 2014
    Assignee: SILICON LINE GmbH
    Inventors: Martin Groepl, Holger Hoeltke
  • Patent number: 8525435
    Abstract: In order to further develop a circuit arrangement and a method for controlling at least one light emitting component, to which a threshold current is applied, with the circuit arrangement being supplied with voltage by means of at least one supply element, and with the light emitting component being controlled by means of at least one switching element arranged between at least one current limiting element and the light emitting component using at least one switching controller, in such a way that the power efficiency is significantly increased in comparison to prior art, it is proposed that a maximum value of the current is provided by means of the current limiting element, and that the logical “1” of the data to be transmitted by means of the light emitting component is represented by periodic switching between the zero value of the current and the maximum value of the current supplied to the light emitting component.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: September 3, 2013
    Assignee: Silicon Line GmbH
    Inventors: Martin Groepl, Holger Hoeltke
  • Patent number: 8258813
    Abstract: In the case of a circuit arrangement which can be supplied by way of at least one voltage source, in particular a driver output stage, for driving at least one differential line which can be connected to at least one first output connection as well as to at least one second output connection for the purpose of, in particular digital, data transmission, wherein the circuit arrangement has at least two paths which are arranged in a mirror-image fashion relative to one another and which connect the voltage source to at least one reference potential, in particular earth potential or ground potential or zero potential, as well as in the case of a method for driving at least one differential line using at least one such circuit arrangement, an increased output impedance is avoided during the switching phase, and this ensures high signal quality.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: September 4, 2012
    Assignee: Silicon Line GmbH
    Inventors: Martin Groepl, Holger Hoeltke
  • Patent number: 8194431
    Abstract: Programmable antifuse transistor, in particular n-channel MOS transistor, and a method for programming at least one such antifuse transistor, includes at least one gate with a gate terminal, source with a source terminal, drain with a drain terminal, and substrate with a substrate terminal, configured so that active circuits/circuit elements do not have to be located at a distance from the antifuse, minimizing area requirements, without additional process steps the level of the potential difference between source terminal and substrate terminal is less than about 0.5 volts, drain terminal and source terminal lie at different potentials. By adjusting drain-source voltage and/or the gate-source voltage a flow of charge carriers occurs between source and drain, causing semiconductor material between source and drain to be thermally heated and to locally melt, forming at least one permanently conducting channel between source and drain.
    Type: Grant
    Filed: October 9, 2010
    Date of Patent: June 5, 2012
    Assignee: Silicon Line GmbH
    Inventors: Martin Groepl, Holger Hoeltke
  • Publication number: 20110268451
    Abstract: For providing circuit arrangement and method for transmitting signals from a data source to a data sink, the signals being TMDS encoded, the driver circuit is supplied by a connection interface, connected upstream, assigned to data source, with supply voltage, electrical TMDS encoded signals are electro-optically converted by an LED connected downstream of the driver circuit and coupled into an optical fiber as light supplied with TMDS encoded signals, the direct current portion supplied from TMDS transmitter to connection interface, to data source, is converted by driver circuit to a modulated signal current for controlling LED.
    Type: Application
    Filed: April 8, 2011
    Publication date: November 3, 2011
    Applicant: SILICON LINE GmbH
    Inventors: MARTIN GROEPL, Holger Hoeltke
  • Publication number: 20110121742
    Abstract: In order to further develop a circuit arrangement and a method for controlling at least one light emitting component, to which a threshold current is applied, with the circuit arrangement being supplied with voltage by means of at least one supply element, and with the light emitting component being controlled by means of at least one switching element arranged between at least one current limiting element and the light emitting component using at least one switching controller, in such a way that the power efficiency is significantly increased in comparison to prior art, it is proposed that a maximum value of the current is provided by means of the current limiting element, and that the logical “1” of the data to be transmitted by means of the light emitting component is represented by periodic switching between the zero value of the current and the maximum value of the current supplied to the light emitting component.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 26, 2011
    Applicant: Silicon Line GmbH
    Inventors: Martin Groepl, Holger Hoeltke
  • Publication number: 20110080765
    Abstract: Programmable antifuse transistor, in particular n-channel MOS transistor, and a method for programming at least one such antifuse transistor, includes at least one gate with a gate terminal, source with a source terminal, drain with a drain terminal, and substrate with a substrate terminal, configured so that active circuits/circuit elements do not have to be located at a distance from the antifuse, minimizing area requirements, without additional process steps the level of the potential difference between source terminal and substrate terminal is less than about 0.5 volts, drain terminal and source terminal lie at different potentials. By adjusting drain-source voltage and/or the gate-source voltage a flow of charge carriers occurs between source and drain, causing semiconductor material between source and drain to be thermally heated and to locally melt, forming at least one permanently conducting channel between source and drain.
    Type: Application
    Filed: October 9, 2010
    Publication date: April 7, 2011
    Applicant: SILICON LINE GMBH
    Inventors: MARTIN GROEPL, Holger Hoeltke