Patents Assigned to Silicon Microstructures, Inc.
  • Publication number: 20210199527
    Abstract: Semiconductor MEMS pressure sensors that can produce a linear and large output signal when subject to a small pressure, without an increase to the front to back span error. One example can experience large deflections without causing catastrophic damage to the membrane. The pressure sensor can include a silicon layer having opposing surfaces, an etched pattern in of the surfaces of the silicon layer, and an etched cavity on the opposite surface of the silicon layer to form a membrane. The etched patterned can include a series of concentric stiffening ribs, an inverted boss, large depression areas next to the membrane edge and/or the boss, and piezoresistive strain concentrators. The ribs and depressions can be formed onto the silicon membrane by anisotropic or isotropic etch techniques. Piezoresistive devices can be diffused into the membrane in the regions near the strain concentrators to form a Wheatstone bridge or other measurement structure.
    Type: Application
    Filed: December 29, 2019
    Publication date: July 1, 2021
    Applicant: Silicon Microstructures, Inc.
    Inventor: Fernando Alfaro
  • Publication number: 20200375540
    Abstract: Pressure sensors that can be reliability operated with the maximum current flowing through the device restricted to 10 uA or below, or below 50 uA in a single-fault condition. This can provide at least a reduced need for the final medical device architect to consider potential risks from excessive current to the patient, simplifying the design and manufacturability of the medical device. An additional benefit is that the sensors are generally more accurate at lower current flow, as self-heating of the resistors and parasitic leakages are reduced, if the signal-to-noise problem is resolved.
    Type: Application
    Filed: September 11, 2019
    Publication date: December 3, 2020
    Applicant: Silicon Microstructures, Inc.
    Inventor: Craig A. Keller
  • Publication number: 20200284632
    Abstract: Reliable flow sensors with enclosures that have predictable thermal variations and reduced mechanical tolerances for a more consistent fluid flow and more consistent flow measurements. Thermal variations can be made predictable by using etched structures in silicon blocks. Mechanical tolerances can be reduced using lithography and high-precision semiconductor manufacturing equipment and techniques.
    Type: Application
    Filed: January 5, 2020
    Publication date: September 10, 2020
    Applicant: Silicon Microstructures, Inc.
    Inventors: Omar Abed, Gertjan van Sprakelaar, Justin Gaynor
  • Publication number: 20200284677
    Abstract: Pressure sensor systems that include a pressure sensor die and other components in a small, space-efficient package, where the package allow gas or liquid to reach either or both sides of a membranes of the pressure sensor die. A package can include a substrate and a cap, where either or both the substrate and the cap divide the package internally into two chambers. The substrate can have a solid bottom layer, a middle layer having a slot or path running a portion of the length of the layer, and a top layer having two through-holes that provide access to the slot or path. The cap can have two ports. A first port can lead to a first chamber where a top side of a pressure sensor is in the first chamber. A second port can lead to a second chamber and the slot or path, where the slot or path leads to a bottom side of the pressure sensor.
    Type: Application
    Filed: January 3, 2020
    Publication date: September 10, 2020
    Applicant: Silicon Microstructures, Inc.
    Inventor: Chris Wagner
  • Publication number: 20200284675
    Abstract: Contact-force-sensing systems that can provide additional information about the forces that are applied by catheters and other devices to cell walls and other surfaces. One example can provide directional information for a contact-force-sensing system. For example, magnitude, plane angle, and off-plane angle information can be provided by a contact-force-sensing system. Another example can provide guiding functionality for a contact-force-sensing system. For example, a contact-force-sensing system can provide tactile response to a surgeon or operator to allow a device to be accurately guided though a body.
    Type: Application
    Filed: July 16, 2019
    Publication date: September 10, 2020
    Applicant: Silicon Microstructures, Inc.
    Inventor: Armin Jamali
  • Publication number: 20200284668
    Abstract: Pressure sensor systems and methods of assembling pressure sensor systems that reduce the need for accurate placement of a pressure sensor die in a pressure sensor package, reduce leakage in pressure sensor systems, and provides a consistent attachment of a pressure sensor die to a package.
    Type: Application
    Filed: December 20, 2019
    Publication date: September 10, 2020
    Applicant: Silicon Microstructures, Inc.
    Inventors: Keyanoush Razavidinani, Gertjan van Sprakelaar, Chris Wagner
  • Publication number: 20200282189
    Abstract: Sensor devices and methods of operating for use with catheter-based treatments of microcardial microvascular obstruction by infusion of fluids having protective agents into vasculature are provided herein. Such catheter devices can include a first lumen configured for advancement over a guidewire and for passage of fluid having protective agents after removal of the guidewire and a second lumen for inflation of an angioplasty balloon and can further include a temperature and/or pressure sensor mounted on the catheter body. Such catheter devices can further include use of a distal occlusive membrane between the angioplasty balloon and distal end to facilitate infusion into microvasculature. The occlusive membrane can be deployed by relative movement of concentric channels, thereby reducing the need for additional lumen while optimizing the size of the catheter device and lumens.
    Type: Application
    Filed: February 14, 2020
    Publication date: September 10, 2020
    Applicant: Silicon Microstructures, Inc.
    Inventor: Justin Gaynor
  • Patent number: 10641672
    Abstract: Pressure sensors and associated structures that may facilitate the use of automated connection processes and tools. An example may provide structures for aligning interconnect wires to pressure sensor bondpads in order to facilitate the use of automated processes and tools.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 5, 2020
    Assignee: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Publication number: 20190078914
    Abstract: Pressure sensors that may be used in flowrate monitoring or measuring systems, where the pressure sensors may enable simple, low-cost designs that are readily implemented. One example may provide a pressure sensor having a built-in flow path with a dimensional variation. Pressures of a fluid on each side of the dimensional variation may be compared to each other. The measured differential pressure may then be converted to a flowrate through the flow path.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 14, 2019
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Omar Abed
  • Publication number: 20180099120
    Abstract: Pressure sensors and associated structures that may have reduced light sensitivity. An example may provide structures reducing light at a component on a membrane of a pressure sensor.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 12, 2018
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Patent number: 9733139
    Abstract: Pressure sensors having vertical diaphragms or membranes. A vertical diaphragm may be located in a first silicon wafer between a first and second cavity, where the first and second cavities are covered by a second silicon wafer. One or more active or passive devices or components may be located on a top of the vertical diaphragm.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: August 15, 2017
    Assignee: Silicon Microstructures, Inc.
    Inventor: Holger Doering
  • Publication number: 20170131167
    Abstract: Pressure sensors and associated structures that may facilitate the use of automated connection processes and tools. An example may provide structures for aligning interconnect wires to pressure sensor bondpads in order to facilitate the use of automated processes and tools.
    Type: Application
    Filed: October 17, 2016
    Publication date: May 11, 2017
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Publication number: 20170089788
    Abstract: Pressure sensors and their methods of manufacturing, where the pressure sensors have a small, thin form factor and may include features designed to improve manufacturability and where the method of manufacturing may improve yield and reduce overall costs.
    Type: Application
    Filed: August 3, 2016
    Publication date: March 30, 2017
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Publication number: 20160178467
    Abstract: Structures and methods of protecting membranes on pressure sensors. One example may provide a pressure sensor having a backside cavity defining a frame and under a membrane formed in a device layer. The sensor may further include a cap joined to the device layer by a bonding layer. A recess for a reference cavity may be formed in one or more of the cap, bonding layer, and membrane or other device layer portion. The recess may have a width that is narrower than a width of the backside cavity in at least one direction. A eutectically bondable metal stack may be provided on a bottom side of the sensor. Conductive traces in the sensor may be formed by implanting and annealing ions. An implanted field shield may be formed to protect the conductive traces that form sense elements. Damage prevention circuitry and a temperature sensing diode may also be provided.
    Type: Application
    Filed: February 10, 2016
    Publication date: June 23, 2016
    Applicant: Silicon Microstructures, Inc.
    Inventors: Steve Terry, Fernando Alfaro, Marc Konradt
  • Publication number: 20150316436
    Abstract: Pressure sensors having vertical diaphragms or membranes. A vertical diaphragm may be located in a first silicon wafer between a first and second cavity, where the first and second cavities are covered by a second silicon wafer. One or more active or passive devices or components may be located on a top of the vertical diaphragm.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 5, 2015
    Applicant: Silicon Microstructures, Inc.
    Inventor: Holger Doering
  • Publication number: 20150198496
    Abstract: Circuits, methods, and apparatus for testing pressure sensors and other integrated circuits and devices while applying a well-controlled pressure are provided. A fluid may be received by a flow controller. The flow controller may provide the fluid to a first branch of a Y-shaped nozzle. The fluid may be directed at a device-under-test by a second branch of the Y-shaped nozzle. A resulting backpressure may be measured by a pressure sensor at a third branch of the Y-shaped nozzle. A height controller may vary a height of the Y-shaped nozzle relative to the device-under-test based on the measured backpressure. Once a target backpressure is reached, the pressure sensor die or other integrated circuit may be tested. The device-under-test may be tested at zero pressure, at one or more different pressures, or combination thereof.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: Silicon Microstructures, Inc.
    Inventor: Benny Zhu
  • Publication number: 20150143926
    Abstract: Circuits, methods, and apparatus that provide pressure sensing devices having a pressure sensor including a diaphragm supported by a frame. The pressure sensor may be mounted on an application-specific integrated circuit. A passage may extend through the application-specific integrated circuit from its underside to its topside where it may terminate in a cavity formed under the diaphragm. Circuit components may be formed in the second wafer portion and located in areas that are not under the first wafer portion. Circuit components may be formed in the second wafer in areas under the first wafer portion, such as under the frame or under the diaphragm. Circuit components may be formed in the second wafer such that they are partially under the first wafer portion, or partially under the frame or partially under the diaphragm.
    Type: Application
    Filed: November 23, 2013
    Publication date: May 28, 2015
    Applicant: Silicon Microstructures, Inc.
    Inventor: Holger Doering
  • Patent number: 8916944
    Abstract: The micro-electromechanical device has a substrate. Integrated into the substrate is a micromechanical component that has a bending element which can be bent reversibly and which has a first end connected to the substrate and extends from the first end over a free space. The bending element has at least one web having two side edges, the course of which is defined by depressions introduced into the bending element and adjacent to the side edges. In order to form a homogenization region located within the web, in which mechanical stresses occurring during bending of the bending element are substantially equal, the mutual spacing of the side edges of the web decreases, as viewed from the first end of the bending element. The device further comprises at least one microelectronic component that is sensitive to mechanical stresses and embedded in the web in the homogenization region of the latter.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: December 23, 2014
    Assignees: ELMOS Semiconductor AG, Silicon Microstructures, Inc.
    Inventors: Bernd Burchard, Michael Doelle, Zhou Ningning
  • Patent number: 8866241
    Abstract: Pressure sensors that may be used in harsh or corrosive environments. One example may provide a pressure sensor having membrane with a top surface that may be free of components or electrical connections. Instead, components and electrical connections may be located under the membrane. By providing a top surface free of components and electrical connections, the top surface of the pressure sensor may be placed in harsh or corrosive environments, while components and electrical connections under the membrane may remain protected.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 21, 2014
    Assignee: Silicon Microstructures, Inc.
    Inventor: Justin Gaynor
  • Publication number: 20140260650
    Abstract: Circuits, methods, and apparatus that provide pressure sensor devices where pressure sensors may be reliably attached to surfaces in device packages, and where the coefficients of expansion of the pressure sensor and the surface are at least approximately equal. Examples may provide pressure sensor devices where pressure sensors may be reliably attached to surfaces in device packages by providing interposers formed to prevent adhesives used to attach the pressure sensors to surfaces from blocking or encroaching into pressure sensor openings or cavities. These same features may be used to accurately locate a pressure sensor relative to the interposer. Embodiments of the present invention may provide pressure sensor devices where the coefficients of expansion of the pressure sensor and the surface are at least approximately equal by proving interposers that are formed of the same or similar material as the pressure sensors, such as silicon.
    Type: Application
    Filed: September 10, 2013
    Publication date: September 18, 2014
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Richard J. August, Severino Legaspi