Abstract: An electronic device for use with a probe head in automated test equipment. The device includes a plurality of semiconductor devices arranged to provide at least one driver/receiver pair where the driver portion of the driver/receiver pair is configured to transmit a signal to at least one device under test and the receiver portion of the driver/receiver pair is configured to receive a signal from the at least one device under test. Each of the plurality of semiconductor devices is fabricated using either a silicon-on-insulator (SOI) or metal-on-insulator (MOI) technology and has a thickness less than about 300 ?m exclusive of any electrical interconnects. The at least one driver/receiver pair is adapted to mount directly to the probe head.
Abstract: An interference device to communicate electrical signals from a probe card used to test electronic circuits. The interface device includes at least one interposer configured to electrically couple to the probe card and a plurality of mechanical springs mechanically coupled to the at least one interposer. Each of the plurality of mechanical springs is removably arranged such that one or more of the plurality of mechanical springs may be removed. A flexible circuit is electrically coupled to the plurality of mechanical springs. The flexible circuit is further configured to mechanically couple to the at least one interposer.
Abstract: A method, and apparatus resulting from the method, for fabricating a circuit board suitable for mounting electronic components. The method includes drilling a plurality of through-holes in a plurality of dielectric sheets, forming a conductive film on at least one side of each of the plurality of dielectric sheets, and substantially filling each of the plurality of through holes with a conductive material. The conductive material is both electricallly and thermally uninterrupted from a first face to a second face of each of the plurality of dielectric sheets. The plurality of dielectric sheets are then sequentially mounted, on atop another, to form the circuit board. The sequential mounting step is performed after the steps of drilling the plurality of through-holes, forming the conductive layer, and substantially filling the plurality of through-holes.
Abstract: A method for forming and using a resulting patterned discrete section to interconnect a plurality of printed circuit boards having electrical contact pads. The patterned discrete section is comprised of one or more dielectric sheets having an exposed first surface and an exposed second surface and a plurality of electrically conductive compliant features on each of the two exposed surfaces. The plurality of electrically conductive compliant features are configured to electrically couple to the electrical contact pads on the plurality of printed circuit boards, thereby providing a discrete means to provide electrical coupling between the patterned discrete section and the plurality of printed circuit boards.