Patents Assigned to SiliconIntervention Inc.
  • Patent number: 11934799
    Abstract: Combinatorial logic circuits with feedback, which include at least two combinatorial logic elements, are disclosed. At least one of the combinatorial logic elements receives an external input (i.e., from outside the circuit), at least one of the combinatorial logic elements receives an input that is feedback of the circuit output, and at least one of the combinatorial logic elements receives an input that is neither an external input nor an output of the circuit but rather is from another of the combinatorial logic elements and thus only “implicit” to the circuit. No staticizers are needed; the logic circuits effectively create implicit equations to perform functions that were previously thought to require sequential logic. The combinatorial logic circuits result in a stable output (in some instances after a brief period of time) due to the implicit equations, rather than achieving stability from an explicit expression of some input to the circuit.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: March 19, 2024
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11750970
    Abstract: An apparatus and method for determining signals representative of events in the environment of a reactive transducer while being driven by a switching amplifier is disclosed. While the switching amplifier is in a zero voltage state, a signal capture circuit that is also in a zero voltage state is connected to the transducer for a relatively brief period of time during which a measurement is made of the residual current flow due to the inductance of the transducer. A prediction of the output signal is then subtracted from the signal measured across the transducer, reducing the overall range of the signal and increasing the relative size of the back-EMF signal compared to any remaining output signal. If desired, conventional echo cancellation can then be performed. The back-EMF signal can then be subjected to further processing by an analog-to-digital converter as known in the art.
    Type: Grant
    Filed: July 10, 2021
    Date of Patent: September 5, 2023
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11593629
    Abstract: A hybrid delta modulator that can be used as a variable threshold neuron in a neural network is described. The hybrid delta modulator exhibits a memory of the prior state of the modulator, similar to a delta modulator, and receives a sum-of-products signal from a weighting circuit and generates a quantized output stream that represents the sum-of-products signal, potentially including an activation function and offset. With appropriately selected components, the hybrid delta modulator separates the integral function of the feedback from the gain function. Further, the gain can be selected, and the characteristic of the output pattern can be tailored to include an arbitrary combination of the input and the rate of change of the input. The use of a hybrid delta modulator of the present approach provides a simpler solution and better performance than many prior art neurons.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: February 28, 2023
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11513596
    Abstract: Described herein is a system and method for controlling a computing system by an AI network based upon an electroencephalograph (EEG) signal from a user. The user's EEG signals are first detected as the user operates an existing controller, during which time the associated artificial intelligence (AI) system learns by correlating the EEG signals with the commands received from the controller. Once the AI system determines that there is sufficient correlation to predict the user's actions, it can take control of the computing system and initiate commands based upon the user's EEG signal in place of the user's actions with the controller. At this point, weights in the AI network may be locked so that further commands from the controller, or the lack thereof, do not reduce correlation with the EEG signals. In some embodiments, the AI network may initiate commands faster than the user would be able to do.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: November 29, 2022
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11514302
    Abstract: A programmable impedance element consists of a plurality of nominally identical two-port elements, each two-port element having an impedance element and two switches, the two-port elements arranged in a chain fashion with a structured set of switches such that a range of impedances can be obtained from each cell by dynamically changing the connections between the impedance elements in the cell. The common cell is constructed by connecting the nominally identical two-port impedance elements in a way that the number of possible combinations of the impedance elements is reduced to the subset of all possible combinations that uses the minimum possible number of connections. This structure allows the creation of matched impedances using industry standard devices. The connections between impedance elements are switches that may be “field-programmable,” i.e., that may be set on the chip after manufacture and configured during operation of the circuit, or alternatively may be mask programmable.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: November 29, 2022
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11481601
    Abstract: An analog element for use as a neuron in a recurrent neural network is described, the analog element having memory of a prior layer state and being a continuous time circuit rather than having a discrete clocking interval. The element is characterized and described by the Laplace s-domain operator, as distinct from a digital solution that uses the z-domain operator appropriate for quantized time descriptions. Rather than using an all-pass filter, the analog equivalent of a unit delay in the z-domain, a finite gain integrator, which is a simpler circuit, may be used to provide the delay in the analog s-domain. The resulting circuit may be easily implemented at the transistor level.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: October 25, 2022
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11392824
    Abstract: A self-clocking (or self-oscillating) modulator in signal processing, similar to a ?? modulator, with particular application in the design of neural networks based on such modulators is described. A system of multiple self-clocking modulators and supporting structures may be configured to perform a calculation similar to that of an analog computer, such as a neural network, at lower power and smaller size than a digital implementation. Such a system constructed using the present approach does not require a sequential solution, but rather converges on a solution in one step; unlike the typical prior art, it thus requires no clock and operates asynchronously in a manner similar to a conventional analog computer. The self-clocking modulator can function as a neuron in a neural network, receiving a sum-of-products signal and generating an output stream like that of a ?? modulator that represents this sum-of-products, potentially also including an activation function and offset.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: July 19, 2022
    Assignee: SiliconIntervention Inc.
    Inventors: A. Martin Mallinson, Christian Leth Petersen
  • Patent number: 11354237
    Abstract: A multiport memory in which one of the ports is analog rather than digital is described. In one embodiment, the analog port functions as a read-only port and the digital port functions as a write only port. This allows the data in the core memory to be applied to an analog signal, while retaining a digital port having access to the core memory for rapid storage of data. One potential use of such a multiport memory is as a bridge between a digital computer and an analog computer; for example, this allows a digitally programmed two-port memory to derive a sum-of-products signal from a plurality of analog input signals, and a plurality of such multiport memories to be used in an analog neural network such as a programmable neural net implementing analog artificial intelligence (AI).
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: June 7, 2022
    Assignee: SiliconIntervention Inc.
    Inventors: A. Martin Mallinson, Christian Leth Petersen
  • Patent number: 11349446
    Abstract: An apparatus and method for using the known phenomena of quantum gate tunneling in semiconductor transistors to define the DC state of a charge-coupled amplifier is described. A first stage in which the tunneling current is bipolar (by pairing PMOS and NMOS transistors) in combination with a second stage with a controlled common mode voltage that can be used to control the first stage tunneling current, and thus the common mode voltage at the input. This can be done without the use of additional elements that may degrade performance or power consumption, since the input devices both process the input signal and maintain the DC operating point of the circuit. The approach may be advantageously used not only in charge-coupled amplifiers as described herein, but also in other capacitively coupled circuits such as charge balancing analog to digital converters (ADCs) and digital to analog converters (DACs).
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: May 31, 2022
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11271535
    Abstract: Improved performance of analog computers is obtained by utilizing a deliberate reduction in gain of the gain elements present in the analog computer. While a prior output of the circuit (if any) is present, the gain of the gain elements is reduced to a level that is low enough that the input signal cannot propagate through the circuit. The input signal is then changed to a new value, or set of values, while the gain of the gain elements remains reduced. Finally, the gain of the gain elements is increased to a level that is high enough to allow the input signal to propagate through the circuit, resulting in an output that is a solution to the problem represented by the analog computer.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: March 8, 2022
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11258453
    Abstract: A pipelined ADC that does not wait for the residue of a signal to settle to be delivered to the next stage of the pipeline, and thus passes signals to subsequent stages at faster than conventional speeds. A pipelined ADC is used that processes signals representing the boundaries of the search space. Thus, each stage does not necessarily receive the signal as pre-processed by the prior stage, but rather the search space boundaries as pre-processed by the prior stage. Reducing the “search space” of the ADC is equivalent to creating the residues in each step of a pipeline as in the prior art. An ADC operating in this fashion operates without error even if the residual search space boundary outputs from one state are presented to the next stage before the outputs have settled, and can run faster for a given power and bandwidth.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: February 22, 2022
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 10965311
    Abstract: Described herein is an improved apparatus for increasing the performance of a ?? modulator, which may function as an ADC. In one embodiment, the ?? modulator comprises a voltage to current converter, a capacitor connected between two outputs of the voltage to current converter to receive a differential input current, and a switch that can switch between connecting each output of the voltage to current converter to ground while disconnecting the other output of the voltage to current converter. In this embodiment, the ?? modulator has no common mode control loop, and no reference current. This results in decreased complexity, i.e., fewer components, as well as reduced noise.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: March 30, 2021
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 10965257
    Abstract: A signal processing circuit that achieves functionality similar to that of a switched capacitor circuit without the necessity a clock. The circuit compensates for finite open loop gain and for offset voltages in the components, allowing the circuit to “calculate” the result of a problem represented by the circuit essentially immediately upon the presentation of a new input or set of inputs. After the circuit is initialized to remove gain, an input is applied to the circuit, and propagates through the network and affects the state of amplifier outputs; the propagation from the input through capacitors to the ultimate output(s) of the circuit is the analog calculation taking place. The calculation is not mediated by a clock, but rather the calculation corresponds to the circuit's one-time response to the application of the inputs. Using these techniques complex signal processing circuits and even analog neural networks may be constructed.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: March 30, 2021
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 10784888
    Abstract: Described herein is a ?? modulator with improved metastability in which the control loop remains stable. In one embodiment, the ?? modulator utilizes differently delayed feedback to successive integrators of the control loop to suppress metastability errors without compromising the stability of the control loop. This is accomplished by including one or more quantizers in the control loop. This technique may be applied to control loops of at least second order, i.e., having two or more integrator stages, where at least one feedback term after the first is non-zero.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: September 22, 2020
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 10680794
    Abstract: Described herein is an apparatus for the recovery of asynchronous data into a fixed clock domain. A phase-locked loop (PLL) of the known art is replaced by a modified quadrature resolver, and the output from the resolver re-creates the selected frequency component of the input asynchronous data. The zero-crossings of this re-created data clock are used to sample the input data stream. One advantage of this technique is that it operates as a state machine on a single clock, and no analog components such as phase detectors or VCOs are needed. In another embodiment, the samples from the input data stream are changed from pulses to Gaussians, allowing for conversion of the sample rate from one clock domain to another.
    Type: Grant
    Filed: July 21, 2019
    Date of Patent: June 9, 2020
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 10680638
    Abstract: Described herein is a method and apparatus for reducing ISI in a single-bit ?? modulator without reducing the dynamic range of the modulator. In one embodiment, the signal fed back to the input of the modulator is not the single-bit outputs of a quantizer as in the prior art, but rather patterns of such outputs. The patterns are selected so that each pattern has the same number of transition edges and there is thus no mismatch of transition times. In one embodiment, the patterns are created by digital logic. In another embodiment, an analog signal is added to the error signal in the feedback loop which causes the quantizer to generate the patterns. When the amplitude of the input signal exceeds a certain level, the modulator reverts to the typical operation of a prior art modulator, thus preserving the full dynamic range of the modulator.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: June 9, 2020
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 10637496
    Abstract: Described herein is an improved apparatus for increasing the performance of a ?? modulator, which may function as an ADC. In one embodiment, the ?? modulator comprises a voltage to current converter, a capacitor connected between two outputs of the voltage to current converter to receive a differential input current, and a switch that can switch between connecting each output of the voltage to current converter to ground while disconnecting the other output of the voltage to current converter. In this embodiment, the ?? modulator has no common mode control loop, and no reference current. This results in decreased complexity, i.e., fewer components, as well as reduced noise.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: April 28, 2020
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 10637640
    Abstract: Described herein is an apparatus for the recovery of asynchronous data into a fixed clock domain. A phase-locked loop (PLL) of the known art is replaced by a modified quadrature resolver, and the output from the resolver re-creates the selected frequency component of the input asynchronous data. The zero-crossings of this re-created data clock are used to sample the input data stream. One advantage of this technique is that it operates as a state machine on a single clock, and no analog components such as phase detectors or VCOs are needed. In another embodiment, the samples from the input data stream are changed from pulses to Gaussians, allowing for conversion of the sample rate from one clock domain to another.
    Type: Grant
    Filed: July 21, 2019
    Date of Patent: April 28, 2020
    Assignee: SiliconIntervention Inc.
    Inventors: A. Martin Mallinson, Christian Leth Petersen