Patents Assigned to SILIXA LTD.
  • Publication number: 20240012760
    Abstract: The present invention provides novel apparatus and methods for fast quantitative measurement of perturbation of optical fields transmitted, reflected and/or scattered along a length of an optical fibre. The present invention can be used for point sensors as well as distributed sensors or the combination of both. In particular this technique can be applied to distributed sensors while extending dramatically the speed and sensitivity to allow the detection of acoustic perturbations anywhere along a length of an optical fibre while achieving fine spatial resolution. The present invention offers unique advantages in a broad range of acoustic sensing and imaging applications. Typical uses are for monitoring oil and gas wells such as for distributed flow metering and/or imaging, seismic imaging, monitoring long cables and pipelines, imaging within large vessel as well as for security applications.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Applicant: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Richard Parker, Sergey Shatalin
  • Publication number: 20240011824
    Abstract: The present invention provides novel apparatus and methods for fast quantitative measurement of perturbation of optical fields transmitted, reflected and/or scattered along a length of an optical fibre. The present invention can be used for point sensors as well as distributed sensors or the combination of both. In particular this technique can be applied to distributed sensors while extending dramatically the speed and sensitivity to allow the detection of acoustic perturbations anywhere along a length of an optical fibre while achieving fine spatial resolution. The present invention offers unique advantages in a broad range of acoustic sensing and imaging applications. Typical uses are for monitoring oil and gas wells such as for distributed flow metering and/or imaging, seismic imaging, monitoring long cables and pipelines, imaging within large vessel as well as for security applications.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Applicant: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Richard Parker, Sergey Shatalin
  • Publication number: 20240011823
    Abstract: The present invention provides novel apparatus and methods for fast quantitative measurement of perturbation of optical fields transmitted, reflected and/or scattered along a length of an optical fibre. The present invention can be used for point sensors as well as distributed sensors or the combination of both. In particular this technique can be applied to distributed sensors while extending dramatically the speed and sensitivity to allow the detection of acoustic perturbations anywhere along a length of an optical fibre while achieving fine spatial resolution. The present invention offers unique advantages in a broad range of acoustic sensing and imaging applications. Typical uses are for monitoring oil and gas wells such as for distributed flow metering and/or imaging, seismic imaging, monitoring long cables and pipelines, imaging within large vessel as well as for security applications.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Applicant: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Richard Parker, Sergey Shatalin
  • Patent number: 11802789
    Abstract: The present invention provides novel apparatus and methods for fast quantitative measurement of perturbation of optical fields transmitted, reflected and/or scattered along a length of an optical fibre. The present invention can be used for point sensors as well as distributed sensors or the combination of both. In particular this technique can be applied to distributed sensors while extending dramatically the speed and sensitivity to allow the detection of acoustic perturbations anywhere along a length of an optical fibre while achieving fine spatial resolution. The present invention offers unique advantages in a broad range of acoustic sensing and imaging applications. Typical uses are for monitoring oil and gas wells such as for distributed flow metering and/or imaging, seismic imaging, monitoring long cables and pipelines, imaging within large vessel as well as for security applications.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 31, 2023
    Assignee: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Richard Parker, Sergey Shatalin
  • Patent number: 11796703
    Abstract: A downhole device is provided that is intended to be co-located with an optical fiber cable to be found, for example by being fixed together in the same clamp. The device has an accelerometer or other suitable orientation determining means that is able to determine its positional orientation, with respect to gravity. A vibrator or other sounder is provided, that outputs the positional orientation information as a suitable encoded and modulated acoustic signal. A fiber optic distributed acoustic sensor deployed in the vicinity of the downhole device detects the acoustic signal and transmits it back to the surface, where it is demodulated and decoded to obtain the positional orientation information. Given that the device is co-located with the optical fiber the position of the fiber can then be inferred. As explained above, detecting the fiber position is important during perforation operations, so that the fiber is not inadvertently damaged.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: October 24, 2023
    Assignee: Silixa Ltd.
    Inventors: Craig Milne, Brian Frankey, Tom Parker, Mahmoud Farhadiroushan
  • Patent number: 11768179
    Abstract: Embodiments of the invention provide a “tool-kit” of processing techniques which can be employed in different combinations depending on the circumstances. For example, flow speed can be found using eddy tracking techniques, or by using speed of sound measurements. Moreover, composition can be found by using speed of sound measurements and also by looking for turning points in the k-w curves, particularly in stratified multi-phase flows. Different combinations of the embodiments can therefore be put together to provide further embodiments, to meet particular flow sensing requirements, both on the surface and downhole. Once the flow speed is known, then at least in the case of a single phase flow, the flow speed can be multiplied by the interior cross-sectional area of the pipe to obtain the flow rate. The mass flow rate can then be obtained if the density of the fluid is known, once the composition has been determined.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: September 26, 2023
    Assignees: Silixa Ltd, Chevron U.S.A. Inc.
    Inventors: Mohammad Amir, Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker
  • Patent number: 11719560
    Abstract: An optical fiber distributed acoustic sensor system makes use of a specially designed optical fiber to improve overall sensitivity of the system by a factor in excess of 10. This is achieved by inserting into the fiber weak broadband reflectors periodically along the fiber. The reflectors reflect a small proportion of the light from the DAS incident thereon back along the fiber, typically in the region of 0.001% to 0.1%. To allow for temperate compensation to ensure that the same reflectivity is obtained if the temperature changes, the reflection bandwidth is relatively broadband. The reflectors are formed from a series of fiber Bragg gratings, each with a different center reflecting frequency, the reflecting frequencies and bandwidths of the gratings being selected to provide the broadband reflection. The reflectors are spaced at the desired spatial resolution of the optical fiber DAS.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: August 8, 2023
    Assignee: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Parker, Sergey Shatalin
  • Patent number: 11656204
    Abstract: A method and apparatus for monitoring a structure using an optical fiber based distributed acoustic sensor (DAS) extending along the length of the structure. The DAS is able to resolve a separate acoustic signal with a spatial resolution of 1 m along the length of the fibre, and hence is able to operate with an acoustic positioning system to determine the position of the riser with the same spatial resolution. In addition, the fiber can at the same time also detect much lower frequency mechanical vibrations in the riser, for example such as resonant mode vibrations induced by movement in the surrounding medium. By using vibration detection in combination with acoustic positioning then overall structure shape monitoring can be undertaken, which is useful for vortex induced vibration (VIV) visualisation, fatigue analysis, and a variety of other advanced purposes. The structure may be a sub-sea riser.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: May 23, 2023
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Yousif Kamil, Roy Lester Kutlik
  • Patent number: 11467007
    Abstract: An improved optical fiber distributed acoustic sensor system uses an optical fiber having reflector portions distributed along its length in at least a first portion. The reflector portions are positioned along the fiber separated by a distance that is equivalent to twice the distance an optical pulse travels along the fiber in a single sampling period of the data acquisition opto-electronics within the sensor system. No oversampling of the reflections of the optical pulses from the reflector portions is undertaken. The sampling points for data acquisition in the sensor system are aligned with the reflections that arrive at the sensor system from along the sensing fiber. Adaptive delay componentry adaptively aligns the reflected optical signals (or their electrical analogues) with the sampling points. Control over the sampling points can re-synchronise the sampling points with the returning reflections. Reflection equalisation componentry may reduce the dynamic range of the returning reflections.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: October 11, 2022
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Sergey Shatalin, Julian Dajczgewand, Mahmoud Farhadiroushan, Tom Parker
  • Publication number: 20210325238
    Abstract: The present invention provides novel apparatus and methods for fast quantitative measurement of perturbation of optical fields transmitted, reflected and/or scattered along a length of an optical fibre. The present invention can be used for point sensors as well as distributed sensors or the combination of both. In particular this technique can be applied to distributed sensors while extending dramatically the speed and sensitivity to allow the detection of acoustic perturbations anywhere along a length of an optical fibre while achieving fine spatial resolution. The present invention offers unique advantages in a broad range of acoustic sensing and imaging applications. Typical uses are for monitoring oil and gas wells such as for distributed flow metering and/or imaging, seismic imaging, monitoring long cables and pipelines, imaging within large vessel as well as for security applications.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Applicant: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Richard Parker, Sergey Shatalin
  • Patent number: 11125909
    Abstract: Embodiments of the present invention help in the processing and interpretation of seismic survey data, by correlating or otherwise comparing or associating seismic data obtained from a seismic survey with flow information obtained from a well or borehole in the surveyed area. In particular, embodiments of the present invention allow for flow data representing a flow profile along a well that is being monitored by a distributed acoustic sensor to be determined, such that regions of higher flow in the well can be determined. For example, in the production zone the well will be perforated to allow oil to enter the well, but it has not previously been possible to determine accurately where in the production zone the oil is entering the well. However, by determining a flow rate profile along the well using the DAS then this provides information as to where in the perforated production zone oil is entering the well, and hence the location of oil bearing sands.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: September 21, 2021
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Mahmoud Farhadiroushan, Tom Parker, Daniel Finfer
  • Patent number: 11022467
    Abstract: An improved optical fiber distributed acoustic sensor system uses an optical fiber having reflector portions distributed along its length in at least a first portion. The reflector portions are positioned along the fiber separated by a distance that is equivalent to twice the distance an optical pulse travels along the fiber in a single sampling period of the data acquisition opto-electronics within the sensor system. No oversampling of the reflections of the optical pulses from the reflector portions is undertaken. The sampling points for data acquisition in the sensor system are aligned with the reflections that arrive at the sensor system from along the sensing fiber. Adaptive delay componentry adaptively aligns the reflected optical signals (or their electrical analogues) with the sampling points. Control over the sampling points can re-synchronise the sampling points with the returning reflections. Reflection equalisation componentry may reduce the dynamic range of the returning reflections.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: June 1, 2021
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Sergey Shatalin, Julian Dajczgewand, Mahmoud Farhadiroushan, Tom Parker
  • Patent number: 10927667
    Abstract: Externally generated noise can be coupled into a fluid carrying structure such as a pipe, well, or borehole so as to artificially acoustically “illuminate” the pipe, well, or borehole, and allow fluid flow in the structure or structural integrity to be determined. In the disclosed system, externally generated noise is coupled into the structure being monitored at the same time as data logging required to undertake the monitoring is performed. This has three effects. First, the externally generated sound is coupled into the structure so as to “illuminate” acoustically the structure to allow data to be collected from which fluid flow may be determined, and secondly the amount of data that need be collected is reduced, as there is no need to log data when the structure is not being illuminated. Thirdly, there are signal processing advantages in having the data logging being undertaken only when the acoustic illumination occurs.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: February 23, 2021
    Assignees: SILIXA LTD., CHEVRON U.S.A. INC.
    Inventors: Mahmoud Farhadiroushan, Tom Parker, Daniel Finfer, Veronique Mahue
  • Patent number: 10883861
    Abstract: An optical fiber distributed acoustic sensor system includes weak broadband reflectors inserted periodically along the fiber. The reflectors reflect only a small proportion of the light from the DAS incident thereon back along the fiber, typically in the region of 0.001% to 0.1%, but preferably around 0.01% reflectivity per reflector. In addition, to allow for temperate compensation to ensure that the same reflectivity is obtained if the temperature changes, the reflection bandwidth is relatively broadband. In some embodiments the reflectors are formed from a series of fiber Bragg gratings, each with a different center reflecting frequency, the reflecting frequencies and bandwidths of the gratings being selected to provide the broadband reflection. A chirped grating may also be used to provide the same effect. In preferred embodiments, the reflectors are spaced at half the gauge length i.e. the desired spatial resolution of the optical fiber DAS.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: January 5, 2021
    Assignee: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Parker, Sergey Shatalin
  • Patent number: 10877001
    Abstract: Embodiments of the invention provide a “tool-kit” of processing techniques which can be employed in different combinations depending on the circumstances. For example, flow speed can be found using eddy tracking techniques, or by using speed of sound measurements. Moreover, composition can be found by using speed of sound measurements and also by looking for turning points in the k-? curves, particularly in stratified multi-phase flows. Different combinations of the embodiments can therefore be put together to provide further embodiments, to meet particular flow sensing requirements, both on the surface and downhole. Once the flow speed is known, then at least in the case of a single phase flow, the flow speed can be multiplied by the interior cross-sectional area of the pipe to obtain the flow rate. The mass flow rate can then be obtained if the density of the fluid is known, once the composition has been determined.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: December 29, 2020
    Assignees: CHEVRON U.S.A. INC., SILIXA LTD.
    Inventors: Mohammad Amir, Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker
  • Patent number: 10704932
    Abstract: An optical fiber sensing system includes a sensing optical fiber and one or more optical amplifiers in series with the sensing fiber and arranged to increase the power of sensing pulses travelling along the fiber to thereby increase the range of the sensing system. The optical fiber sensing system is one selected from the group including an optical fiber distributed acoustic sensor (DAS), an optical fiber distributed temperature sensor (DTS), or an optical time domain reflectometry (OTDR) system.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 7, 2020
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Tom Parker, Mahmoud Farhadiroushan, Arran Gillies
  • Patent number: 10677642
    Abstract: A prefabricated mat-like structure having lengths of fiber mounted thereon or therein in a predetermined deployment pattern that provides a high spatial density of fiber to give increased spatial sensing resolution is described. The prefabricated mat-like structures may be very easily deployed by being placed against and/or wrapped around an object to be monitored, typically being fastened in place by clamps or the like. In addition, easy removal from the object is also obtained, by simply unfastening the mat-like structure, which may then be redeployed elsewhere. The prefabricated mat-like structure having the fiber already mounted thereon or therein therefore provides a very convenient and easily installable and removable solution.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 9, 2020
    Assignee: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Veronique Mahue, Tom Parker, Sergey Shatalin
  • Publication number: 20190331523
    Abstract: The present invention provides novel apparatus and methods for fast quantitative measurement of perturbation of optical fields transmitted, reflected and/or scattered along a length of an optical fibre. The present invention can be used for point sensors as well as distributed sensors or the combination of both. In particular this technique can be applied to distributed sensors while extending dramatically the speed and sensitivity to allow the detection of acoustic perturbations anywhere along a length of an optical fibre while achieving fine spatial resolution. The present invention offers unique advantages in a broad range of acoustic sensing and imaging applications. Typical uses are for monitoring oil and gas wells such as for distributed flow metering and/or imaging, seismic imaging, monitoring long cables and pipelines, imaging within large vessel as well as for security applications.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Tom Richard Parker, Sergey Shatalin
  • Patent number: 10451462
    Abstract: Embodiments of the present invention provide a cable for optical fiber sensing applications formed from fiber wound around a cable core. A protective layer is then preferably placed over the top of the wound fiber, to protect the fiber, and to help keep it in place on the cable core. The cable core is preferably of a diameter to allow bend-insensitive fiber to be wound thereon with low bending losses. The effect of winding the fiber onto the cable core means that the longitudinal sensing resolution of the resulting cable is higher than simple straight fiber, when the cable is used with an optical fiber sensing system such as a DAS or DTS system. The achieved resolution for the resulting cable is a function of the fiber winding diameter and pitch, with a larger diameter and reduced winding pitch giving a higher longitudinal sensing resolution.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 22, 2019
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker, Sergey Shatalin, Dmitry Strusevich
  • Patent number: 10444392
    Abstract: A downhole device is provided that is intended to be co-located with an optical fiber cable to be found, for example by being fixed together in the same clamp. The device has an accelerometer or other suitable orientation determining means that is able to determine its positional orientation, with respect to gravity. A vibrator or other sounder is provided, that outputs the positional orientation information as a suitable encoded and modulated acoustic signal. A fiber optic distributed acoustic sensor deployed in the vicinity of the downhole device detects the acoustic signal and transmits it back to the surface, where it is demodulated and decoded to obtain the positional orientation information. Given that the device is co-located with the optical fiber the position of the fiber can then be inferred. As explained above, detecting the fiber position is important during perforation operations, so that the fiber is not inadvertently damaged.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: October 15, 2019
    Assignee: SILIXA LTD.
    Inventors: Craig Milne, Brian Frankey, Tom Parker, Mahmoud Farhadiroushan