Abstract: The antenna of an RFID tag or label is disconnected from the balance of the RFID chip by means of a series switch activated in response to a logic command, CLOAK, generated by the RFID chip. Activation of the switch disconnects the antenna of the RFID tag for the remainder of the RFID chip and effects a high impedance resistance across the antenna terminals. An RC circuit is charged by activation of the CLOAK signal and thereafter discharges during a predetermined RC time period as determined by a high impedance series antifuse leakage transistor. The antenna is thus disconnected for a time sufficient to allow the remaining RFID tags in an RF interrogation field to be identified. Meanwhile, during the disconnection of the antenna from the RFID chip and its loading causes its effective absorption and scattering aperture to be reduced near zero so as to electromagnetically remove the RFID tag from the zone of interrogation during the predetermined time period.
Abstract: A method and apparatus for determining the identification number or any other information within a plurality of radiofrequency identification tags within a common field of interrogation utilizes a combination of an isolation state into which the tags may be placed together with bitwise interrogation of the identification number or information followed by selective deactivation. A first bit in the identification number or information is interrogated of all the tags in the field. If any tag responds that the bit is a 1, a 1 is entered into an ID register in a reader and all tags in which a 0 exists in that bit position are deactivated. The process continues until only one tag remains activated. The last activated tag at this point has been completely read and is then placed in an isolated state. The process is begun anew with the remaining nonisolated tags until all tags have been read.