Patents Assigned to SiRF Technologies, Inc.
  • Patent number: 7082292
    Abstract: A mobile communications device using a common oscillator for communication and global positioning system (GPS) functions. In one embodiment, a communications unit receives a precision carrier frequency signal from a source and generates a reference signal that is used to calibrate a common oscillator.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: July 25, 2006
    Assignee: SiRF Technology, Inc.
    Inventor: Paul A. Underbrink
  • Patent number: 7076256
    Abstract: A cellular telephone for use with a cellular telephone network includes a GPS receiver section. Position determination related information is transmitted to and from the cellular telephone using a control channel.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: July 11, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Anthony J. Orler, Ashutosh Pande
  • Patent number: 7069019
    Abstract: System and method to determine the location of a receiver are provided. The received signal is decomposed into signal chunks that are then correlated with the reference signals of the transmitting sources. In some embodiments, the signal chunks may be shorter than the period of the reference signals. For each signal source, a grid of correlation values is constructed containing one column of correlation values for each signal chunk. Each column contains correlation values for several code-phases. Probes are executed in the grid to acquire the location-determining signals. In some embodiments, a probe includes calculating the fourier transform of a row in the grid, yielding correlation values associated with a refined set of frequency values. Potential acquisitions are verified by processing increasing portions of the received signal. Confirmed acquisition may be used to aid further acquisitions.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: June 27, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Anant Sahai, Andrew Chou
  • Patent number: 7047368
    Abstract: Memory reallocation and sharing among components of an electronic system is provided. The electronic system includes a first memory area coupled for access by a first processor via a first bus, and a second memory area coupled for access by a second processor via a second bus. An example system includes a central processor as the first processor and a digital signal processor as the second processor. The electronic system further includes memory configurations that support shared access of the second memory area by the first processor. Using shared access, the first processor can directly access the second memory via the first bus or indirectly access the second memory via the second bus and the second processor. The memory sharing also includes partitioning the shared memory to simultaneously provide the first processor with direct and indirect access to the shared memory.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: May 16, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Nicolas P. Vantalon, Steven A. Gronemeyer, Vojislav Protic
  • Patent number: 7047023
    Abstract: A GPS RF Front End IC using a single conversion stage, which is immune from self jamming from clock signal harmonics generated internally or from dominant clock signal harmonics generated externally by the subsequent baseband GPS processor which uses a clock of 48•fo for GPS processing. The improved frequency plan reduces the problems of interference when the integration of the RF and Baseband functions is required in the form of a single-chip, or as 2 individual chips on a common substrate.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: May 16, 2006
    Assignee: SiRF Technology, Inc.
    Inventor: Robert Tso
  • Patent number: 7043363
    Abstract: Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker. The tracker hardware interface receives positioning information from the space vehicle tracker. The host based positioning system also includes a memory that includes a GPS library having a user interface, a tracker interface, and an operating system interface. A processor runs functions provided by the interfaces.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 9, 2006
    Assignee: Sirf Technology, Inc.
    Inventors: Clifford Yamamoto, Sebastian Nonis, Ashutosh Pande, Nikola Bulatovic, Stefan Witanis
  • Patent number: 7035613
    Abstract: In a system and method for simultaneously receiving or switching between dual frequency carrier signals in a GPS receiver, the GPS receiver is adapted to utilize different harmonics of a sub-harmonic frequency generator, which may include a lower frequency voltage controlled oscillator (VCO) to detect the L1 and L2 GPS carriers. A sub-harmonic mixer may be used to simultaneously down convert the L1 and L2 signals to a lower intermediate frequency (IF). A second mixer may be an image reject (IR) mixer used to separate the downconverted L1 and L2 signals. This mixer may be configured to simultaneously monitor the L1 and L2 signals, or to switch between the L1 and L2 signals. High frequency switching is not required of the radio frequency (RF) input or local oscillator signals, and simultaneous L1 and L2 reception is enabled without a 3 dB image noise degradation.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: April 25, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Noshir B. Dubash, Robert Tso
  • Patent number: 7030814
    Abstract: System and method to determine the location of a receiver in a multipath environment are provided. The received signal is correlated with the reference signals associated with the transmitting sources. Each correlation function is processed to derive various types of signal constraints, such as probability densities and uncertainty regions or intervals. In some embodiments, these constraints are for the code-phases and the Doppler frequencies. These signal constraints are transformed into constraints on the receiver variables and then fused together into a unified receiver constraint. A-priori constraints, such as constraints on the location of the receiver or the timestamp, may be incorporated into the unified receiver constraint. Some embodiments estimate a location based also on the estimated Doppler frequency. The constraints used by the invention are based on models of multipath effects and are geared towards mitigating these effects.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: April 18, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Jesse Stone, Stefano Casadei, Wallace Mann, Benjamin Van Roy
  • Patent number: 7027534
    Abstract: Techniques are provided for fine-tuning estimates of a delay value for a sampled signal. One aspect of the invention is to perform, for the sampled signal, coarse-grained calculations of the In Phase and Quadrature (I and Q) correlation integrals at a limited number of points, wherein the calculations are performed over a range of hypothesized delay values. A range of delay values of interest are then determined from the coarse-grained calculations of the I and Q correlation integrals. A subset of I and Q values based on the coarse granularity calculations of the I and Q correlation functions is used to perform a time-domain interpolation to obtain fine-grained values of the I and Q integrals in the range of the delay values of interest. Magnitude calculations are performed based on the fine-grained values of the I and Q integrals. Fine-tuned estimates of delay value are based on the magnitude calculations. Alternatively, fine-tuned estimates of delay value are based on the template-matching approach.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: April 11, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Anant Sahai, John Tsitsiklis, Stefano Casadei, Andrew Chou, Benjamin Van Roy, Jesse Robert Stone
  • Patent number: 7026986
    Abstract: The present invention discloses methods, apparatuses, and systems for eliminating auto- and cross-correlation in weak signal CDMA systems, such as GPS systems. The invention uses parallel dam paths that allow standard correlation of signals in parallel with verification of the lock signal to determine whether the system has locked onto the proper signal within the scanned signal window. The invention can be made with multiple CPUs, a single CPU with dual input modes, on multiple IC chips, or as a single IC chip solution for small, low cost reception, downconversion, correlation, and verification systems.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: April 11, 2006
    Assignee: SIRF Technology, Inc.
    Inventors: Gregory Bret Turetzky, Charles P. Norman, Henry D. Falk
  • Patent number: 7009555
    Abstract: The present invention discloses a GPS system that uses call-processor intelligence to determine the mode of operation of a GPS receiver located in a GPS terminal. The modes are selected based on the availability of network facilities, the GPS information that can be acquired, or user input requirements.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: March 7, 2006
    Assignees: SIRF Technology, Inc., Matsushita Electric Works, Ltd.
    Inventors: Ikuo Tsujimoto, Junichi Suzuki, Chiayee Steve Chang, Lionel Jacques Gerin, Ashutosh Pande
  • Patent number: 7002514
    Abstract: A systematic method for acquiring positioning signals, such as global positioning system (GPS) signals, uses different signal detection algorithms at different stages of signal detection. For example, a method for detecting multiple positioning signals may include first detecting a first positioning signal using a robust but less sensitive signal detection method, such as non-coherent integration. Based on the signal parameter values that allow detection of the first positional signal, detecting a second positioning signal using a more sensitive method, such as coherent integration. In this manner, by capturing the strongest signal first using a robust method, signal detection parameter values common to positioning signals can be narrowed to allow subsequent signal acquisitions using a more sensitive—but computationally more intensive—method.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: February 21, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Julien Basch, Andrew Chou, Robert Lorenz, Jesse Stone
  • Patent number: 7002516
    Abstract: A wireless communication device (e.g., a cellular telephone) includes one transceiver for voice or data communication and a global positioning system (GPS) receiver a signal for receiving a GPS signal from the GPS satellites. The GPS receiver does not receive the GPS signal when the transceiver is transmitting, so that the GPS signal receives may consist of multiple signal segments of various duration and various delays. A method is provided which combine correlations of these multiple signal segments cumulatively until a sufficiently signal-to-noise ratio is achieved to allow detection of the transmitted signal of one or more of the GPS satellites.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: February 21, 2006
    Assignee: SiRF Technology, Inc.
    Inventor: Steven A. Gronemeyer
  • Patent number: 6985811
    Abstract: A method and apparatus for real time clock brownout detection. A low power real time clock (RTC) operates continuously to keep time in a global positioning system (GPS) receiver while some receiver components are powered down. In various embodiments, a brownout detector circuit detects a loss of RTC clock cycles. If a loss of RTC clock cycles exceeds a predetermined threshold such that the RTC is not reliable for GPS navigation, an RTC status signal so indicates.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: January 10, 2006
    Assignee: SIRF Technology, Inc.
    Inventor: Steven A. Gronemeyer
  • Patent number: 6961019
    Abstract: A method and apparatus for minimizing the interference between wireless transmissions and a proximately located or co-located GPS receiver is disclosed. By feedforward of a phase and amplitude adjusted version of the transmitted signal and combining said signal with the composite signal at the input of the GPS receiver, the GPS receiver sensitivity degradation is reduced or eliminated in the case of perfect cancellation, and the GPS receiver is not jammed by the wireless transmissions. The invention allows a single antenna to be implemented for GPS reception and wireless transmission and reception without unduly complicating the diplexing/filtering network required to separate the multiple signals being transmitted and/or received by the single antenna.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: November 1, 2005
    Assignee: Sirf Technology, Inc.
    Inventors: Richard Joseph McConnell, Robert Tso
  • Patent number: 6961660
    Abstract: A data detection circuit within a global positioning system (GPS) satellite receiver operates to detect and decode data sent in a spread spectrum signal. The data detection circuit receives input from a radio receiver, the information containing data from a plurality of satellites. The data is supplied to a circular memory device, which determines which data corresponds to which satellite. The memory device sends the received signal to a matched filter, which decodes the signal received from each satellite. This signal is analyzed to determine whether a phase inversion due to data modulation on the received signal is present. The phase inversion can occur at boundaries, known as data epochs, in the received signal, and corresponds to data in the received signal. This data contains information relating to the position of each satellite and is collected by the data detection circuit for use by the GPS receiver.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: November 1, 2005
    Assignee: SiRF Technology, Inc.
    Inventors: Paul A. Underbrink, Steven A. Gronemeyer
  • Patent number: 6952440
    Abstract: A spread spectrum detector employs a Doppler phase correction system that improves correlation of pseudo-noise (PN) codes to a received spread spectrum signal by combining phase shifts, in the time domain, to correlation values that compensate for the Doppler shift error that is inherent in the signal and that is imposed upon the signal by movement between the signal source and receiver. In architecture, the Doppler phase correction system includes a receiver to receive a spread spectrum modulated signal having the Doppler shift error, a multiplier to produce a plurality of complex first correlation values based upon the signal and a code. A phase shifter generates a plurality of complex second correlation values respectively from the first correlation values. The second correlation values being phase shifted by respective different amounts from corresponding first correlation values, so that the second correlation values exhibit less of the Doppler shift error than the first correlation values.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: October 4, 2005
    Assignee: SiRF Technology, Inc.
    Inventor: Paul A. Underbrink
  • Patent number: 6950058
    Abstract: A system, method, apparatus, and means for providing GPS aiding data to networked receivers includes capturing partial aiding data at a network device, deriving accurate aiding data from the partial aiding data, and utilizing the accurate aiding data as aiding data. In some embodiments, providing GPS aiding data further includes capturing second partial signal data at a second network device, deriving accurate aiding data from an aggregation of the partial aiding data and the second partial aiding data, and forwarding the accurate aiding data to the network device and the second network device. In some embodiments, this process repeats as needed to maintain accurate timing and position information within the network.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: September 27, 2005
    Assignee: SiRF Technology, Inc.
    Inventors: Desmond Davis, Yaser Rehem
  • Patent number: 6933886
    Abstract: Techniques are provided for aiding in acquiring a signal using the data bit information that is associated with each signal source. One aspect of the invention is to use the data bit information that is associated with each signal source when calculating the In Phase and Quadrature correlation integrals by using the sampled data associated with the received signal. By using the data bit information that is associated with each signal source, coherent correlation may be performed by breaking the signal into data blocks and performing calculations on a block-by-block basis. Coherent correlation is the calculation of In Phase and Quadrature correlation integrals for sampled data that is associated with the received signal.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: August 23, 2005
    Assignee: SiRF Technology, Inc.
    Inventors: Anant Sahai, Wallace Mann, Andrew Chou, Benjamin Van Roy
  • Patent number: 6931055
    Abstract: A spread spectrum detector employs a Doppler phase correction system that improves correlation of pseudo-noise (PN) codes to a received spread spectrum signal by combining phase shifts to correlation values, using a fast fourier transform (FFT), that compensate for the Doppler shift error that is inherent in the signal and that is imposed upon the signal by movement between the signal source and receiver. In architecture, the Doppler phase correction system includes a receiver to receive a spread spectrum modulated signal having the Doppler shift error. A multiplier produces a plurality of complex first correlation values based upon the signal and a code. A phase shifter generates a plurality of complex second correlation values respectively from the first correlation values using an FFT.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: August 16, 2005
    Assignee: SiRF Technology, Inc.
    Inventors: Paul A. Underbrink, Steven A. Gronemeyer