Abstract: A method for GPS navigation which uses an interacting multiple-model (IMM) estimator with a probabilistic data association filter (PDAF) improves navigation performance. The method includes (a) providing two or more models of GPS navigation, with each model characterized by a model state vector which is updated periodically, (b) providing for each model a corresponding filter for deriving, for each period, a current value for the corresponding model state vector based on current measurements made on parameters affecting the corresponding state vector; and (c) applying an interacting multiple model (IMM) estimator to provide, for each period, a current value for a system state vector using the current values of the model state vectors for that period and their corresponding filters. Each model state vector may include one or more of the following: variables: 3-dimensional position, 3-dimensional velocity, satellite clock bias, satellite clock drifts and one or more other satellite parameters.
Abstract: Generic SATPS receivers and methods for configuring generic SATPS receivers that include a plurality of outputs are provided. These configurable SATPS receivers are adapted to be utilized in at least one of a plurality of particular SATPS receiver applications, and can also include a plurality of input paths, and a means for generating selected ones of the plurality of possible outputs. Selected ones of the plurality of outputs are enabled/disabled based on at least one requirement of the particular receiver application to configure or program the generic SATPS receiver to function as a SATPS receiver used for a particular SATPS receiver application or operating environment. The selected ones of the plurality of outputs can be defined by and can be those utilized by the particular SATPS receiver application or operating environment.
Type:
Grant
Filed:
June 18, 2003
Date of Patent:
June 9, 2009
Assignee:
SiRF Technology, Inc.
Inventors:
Anthony James Orler, Keith Jacob Brodie, Charles P. Norman
Abstract: A method and apparatus for a spread spectrum matched filter with Doppler correction suitable for using in a radio frequency receiver. The system includes a signal sampler operable to receive signal data and a Doppler shift system operable to provide a Doppler shift correction value. The system also includes a time domain signal processor in signal communication with the signal sampler, the Doppler shift system and the code signal input, the time domain signal processor operable to shift the signal data by the Doppler shift correction value and to determine a correlation between the shifted signal data and the code signal input. The system reduces a waveform representing Doppler correction values into a Boolean combination that may selectively represent the waveform and be implemented by the processing of a matched filter.
Abstract: The present invention provides systems and methods that enable a standalone receiver capable of downloading navigation data under weak signal conditions. In an embodiment, a standalone navigation receiver generates predicted satellite orbits based on the tracking history of the satellites stored in the receiver. The tracking history comprises historical navigation data previously received from the satellites. The receiver uses the predicted satellite orbit to generate navigation data such as ephemeris and almanac. Since the predicted satellite is accurate, the generated navigation data is similar to the navigation data transmitted by the navigation satellites, and can therefore be used by the receiver to correct the downloaded navigation data bits. Thus many of the bits of a downloaded navigation word, especially the higher order significant bits of the word can be corrected. The remaining bit errors can be resolved based on a parity check of the word.
Abstract: Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker to a host computer. The tracker hardware interface receives positioning information from the space vehicle tracker and communicates with the host computer using predefined messages. The host based positioning system includes a layered protocol approach to enable user applications on a host computer to access data from tracker hardware device.
Type:
Grant
Filed:
October 10, 2002
Date of Patent:
June 9, 2009
Assignee:
SiRF Technology, Inc.
Inventors:
Clifford Yamamoto, Sebastian Nonis, Ashutosh Pande, Nikola Bulatovic, Stefan Witanis
Abstract: A signal processing system control method and apparatus are described. Various embodiments include a signal processing system with multiple subsystems. A method for controlling the signal processing system includes storing channel records in a designated area of shared memory. Channel records include channel data that include one of multiple discrete signals to be processed by multiple subsystems in a time-multiplexed manner. The channel record includes information used by the multiple subsystems to process a channel, including information used to configure the multiple subsystems, information used to allocate the shared memory, and information used to communicate between multiple subsystems.
Abstract: The present invention discloses analog methods and circuits for compression of the GPS C/A signal to audio bandwidths to improve TTFF times, as well as decreasing auto correlation errors in systems that employ the methods and devices disclosed.
Abstract: A GPS Mobile Unit is described. The GPS Mobile Unit may include at least two antennas, at least two GPS receivers, and a position solution module in signal communication with the at least two GPS receivers.
Abstract: Provided herein are systems and methods that enable a navigation receiver to determine receiver position using a low ppm (Parts Per Million) Real Time Clock (RTC) under weak satellite signal reception conditions without the need for timing information from navigation satellites or aiding systems. Under weak signal conditions, the receiver is unable to demodulate navigation data bits but may be able to synchronize with the one ms PN sequences and 20 ms data bit edges of a received signal. In this case, the receiver is unable to determine the signal travel time from the navigation data bits resulting in one ms and/or 20 ms integer ambiguities in the travel time. Systems and methods are provided for resolving these one ms and/or 20 ms integer ambiguities and correct or reconstruct the pseudorange measurements accordingly. The reconstructed pseudorange measurements are used to accurately determine the receiver position.
Abstract: A Global Navigation Satellite System (GNSS) receiver and associated method capable of acquiring weak GNSS signals from a plurality of GNSS satellites produces a GNSS signal's code time, carrier frequency, and data bit transition parameters for subsequent signal tracking and position fixing. The GNSS receiver includes a baseband signal processor with special functionalities for acquiring weak signals. In a preferred embodiment, the time and frequency uncertainty space is reduced using available information and then special techniques are used to rapidly search the remaining uncertainty space. Successive reversal of short-length correlations within a data bit interval (a block) enables data bit transition detection and data bit sign correction prior to coherent integration.
Abstract: A GPS RF Front End IC containing a Programmable Frequency Synthesizer is disclosed. The GPS RF front end IC having a programmable frequency synthesizer allows a relatively fixed internal frequency plan while able to use a number of different reference frequencies provided by the host platform, which can be a wireless phone, or other such device, which can provide an accurate reference frequency signal.
Type:
Grant
Filed:
June 6, 2005
Date of Patent:
March 31, 2009
Assignee:
SiRF Technology, Inc.
Inventors:
Robert Tso, Noshir Behli Dubash, Tao Zhang
Abstract: Generic SATPS receivers and methods for configuring generic SATPS receivers that include a plurality of outputs are provided. These configurable SATPS receivers are adapted to be utilized in at least one of a plurality of particular SATPS receiver applications, and can also include a plurality of input paths, and a means for generating selected ones of the plurality of possible outputs. Selected ones of the plurality of outputs are enabled/disabled based on at least one requirement of the particular receiver application to configure or program the generic SATPS receiver to function as a SATPS receiver used for a particular SATPS receiver application or operating environment. The selected ones of the plurality of outputs can be defined by and can be those utilized by the particular SATPS receiver application or operating environment.
Type:
Grant
Filed:
August 25, 2006
Date of Patent:
March 24, 2009
Assignee:
SiRF Technology, Inc.
Inventors:
Anthony James Orler, Keith Jacob Brodie, Charles P. Norman
Abstract: The present invention discloses a GPS system that uses call-processor intelligence to determine the mode of operation of a GPS receiver located in a GPS terminal. The modes are selected based on the availability of network facilities, the GPS information that can be acquired, or user input requirements.
Type:
Application
Filed:
February 18, 2008
Publication date:
February 5, 2009
Applicants:
SiRF Technology, Inc., Matsushita Electric Works, Ltd.
Inventors:
Ikuo Tusjimoto, Junichi Suzuki, Chiayee Steven Chang, Lionel Jacques Garin, Ashutosh Pande
Abstract: The techniques to detect and mitigate the false reacquisition in a global satellite navigation receiver are disclosed. The false reacquisition due to frequency side-lobes and code autocorrelation secondary lobes are considered for mitigation. A set of two threshold values is used to detect correct reacquisition and reject false reacquisition. While the reacquisition of the signal is straight forward when the correlation is clear with the power above the first threshold, it is not so clear when the power is between two thresholds. So a further search for the maximum power among the retained dwells results in correct reacquisition. The search range depends upon the signal blockage interval and receiver dynamics. The feedback from navigational solution may be used to determine the search range both in frequency and code phase. In the case of frequency side-lobes, which occur only at specified frequency components, these frequencies are tested for maximum power response.
Type:
Grant
Filed:
November 14, 2005
Date of Patent:
January 20, 2009
Assignee:
SiRF Technology Holdings, Inc.
Inventors:
Zhike Jia, Shridhara A. Kudrethaya, Chi-Shin Wang
Abstract: Provided herein are systems and methods for achieving long coherent integration in a navigational receiver to improve the sensitivity of the receiver and enable the receiver to acquire, reacquire and track signals under very weak signal conditions. In an embodiment, phase compensation is computed based on estimated Doppler frequency, rate of change of the Doppler frequency with time, and second order rate of change of the Doppler frequency. The Doppler frequency may be computed from an orbital model or ephemeris. This phase compensation is used to compensate samples of the input signal for changes in the phase due to the Doppler frequency. Frequency components of the phase-compensated samples are then computed using a frequency analysis such as a Fast Fourier Transform (FFT). The maximum frequency component is taken as an error frequency and used to compensate the samples of the input signal for residual frequency error.
Abstract: A frequency domain diversity DVB receiver device includes multiple antenna ports for receiving radio signals, and radio signal processing circuits connected to the antenna ports that convert the received radio signals into digital samples. The digital samples from the different antenna ports time-share a front-end processor which processes the digital samples to provide time-domain symbols. The time-domain symbols are stored in time-domain symbol buffers according to which of the antenna ports the time-domain symbols are received. A fast fourier transform circuit then retrieves the time-domain symbols and converts them frequency-domain symbols, which are then stored one or more frequency-domain symbol buffers according to the antenna ports the corresponding radio signals are received. A diversity processor which combines the frequency-domain symbols from the frequency-domain symbol buffers.
Type:
Grant
Filed:
December 21, 2006
Date of Patent:
December 16, 2008
Assignee:
SiRF Technology, Inc.
Inventors:
Sharath Ananth, Sanjai Kohli, Mark Alan Sturza, Donald Leimer
Abstract: A system and method for providing temperature compensation in a oscillator component (such as a crystal oscillator component) that includes a closely-located temperature sensing device. The crystal oscillator component in example systems and methods is exposed to a temperature profile during a calibration procedure. Temperature and frequency data are collected and applied to coefficient generating function according to a temperature compensation model to generate a set of coefficients that are used in the temperature compensation model in an application device. The generated coefficients are stored in a coefficient memory accessible to an application device during operation.
Abstract: The present invention discloses a method and apparatus for allowing for GPS receiver functions and GPS digital processing functions to co-exist and function optionally or nearly optimally while in close proximity on a common die.
Abstract: A method and a low noise amplifier are provided such that the low noise amplifier has a power dissipation that is adaptive to the noise interference levels. The low noise amplifer includes (i) first, second and third differential amplifiers connected in series each having a terminal for receiving a power supply current; and (ii) first and second switches responsive to a control signal, the first and second switches configured such that, (a) when the control signal is in a first state, the first switch and the second switch enable independent currents to flow in the terminals for receiving a power supply current; and (b) otherwise, the first switch and the second switch enable the terminal for receiving a power supply current of the second differential amplifier to reuse a current provided to the terminal for receiving a power supply current of the third differential amplifier. The control signal is provided by a radio frequency noise power detector, which senses an output signal of the low noise amplifier.
Abstract: The invention provides a method and apparatus to optimally estimate and adaptively compensate the temperature-induced frequency drift of a crystal oscillator in a navigational signal receiver. A Read-Write memory encodes two tables, one for looking up frequency drift values versus temperature readings and another one for valid data confirmation on the first table. The initially empty look-up table is gradually populated with frequency drift values while the receiver computes the frequency drift along with its position. During initial start of the receiver or re-acquisition of satellite signals, the stored frequency drift value corresponding to the current temperature is used. If no valid frequency drift value is available, the frequency drift value is computed based on the existing frequency drift values in the table. This invention reduces the Time-To-First-Fix (TTFF) of the receiver and enables the receiver to self-calibrate, thus no additional factory calibration would be necessary.
Type:
Grant
Filed:
May 26, 2005
Date of Patent:
December 2, 2008
Assignee:
Sirf Technology Holdings, Inc.
Inventors:
Chi-Shin Wang, Kudrethaya A. Shridhara, Jun Mo, Shaowei Han, Hansheng Wang