Patents Assigned to Sisom Thin Films LLC
  • Patent number: 11894547
    Abstract: An engineered particle for an energy storage device, the engineered particle includes an active material particle, capable of storing alkali ions, comprising an outer surface, a conductive coating disposed on the outer surface of the active material particle, the conductive coating comprising a MxAlySizOw film; and at least one carbon particle disposed within the conductive coating. For the MxAlySizOw film, M is an alkali selected from the group consisting of Na and Li, and 1?x?4, 0?y?1, 1?z?2, and 3?w?6.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: February 6, 2024
    Assignees: ULVAC TECHNOLOGIES, INC., SISOM THIN FILMS LLC
    Inventors: Isaiah O. Oladeji, Akiyoshi Suzuki, Koukou Suu
  • Publication number: 20230216038
    Abstract: An engineered particle for an energy storage device, the engineered particle includes an active material particle, capable of storing alkali ions, comprising an outer surface, a conductive coating disposed on the outer surface of the active material particle, the conductive coating comprising a MxAlySizOw film; and at least one carbon particle disposed within the conductive coating. For the MxAlySizOw film, M is an alkali selected from the group consisting of Na and Li, and 1?x?4, 0?y?1, 1?z?2, and 3?w?6.
    Type: Application
    Filed: March 2, 2023
    Publication date: July 6, 2023
    Applicants: ULVAC Technologies, Inc., Sisom Thin Films LLC
    Inventors: Isaiah O. OLADEJI, Akiyoshi SUZUKI, Koukou SUU
  • Publication number: 20210104738
    Abstract: An engineered particle for an energy storage device, the engineered particle includes an active material particle, capable of storing alkali ions, comprising an outer surface, a conductive coating disposed on the outer surface of the active material particle, the conductive coating comprising a MxAlySizOw film; and at least one carbon particle disposed within the conductive coating. For the MxAlySizOw film, M is an alkali selected from the group consisting of Na and Li, and 1?x?4, 0?y?1, 1?z?2, and 3?w?6.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 8, 2021
    Applicants: ULVAC Technologies, Inc., Sisom Thin Films LLC
    Inventors: Isaiah O. OLADEJI, Akiyoshi SUZUKI, Koukou SUU
  • Patent number: 8465556
    Abstract: A method for making a solid state cathode comprises the following steps: forming an alkali free first solution comprising at least one transition metal and at least two ligands; spraying this solution onto a substrate that is heated to about 100 to 400° C. to form a first solid film containing the transition metal(s) on the substrate; forming a second solution comprising at least one alkali metal, at least one transition metal, and at least two ligands; spraying the second solution onto the first solid film on the substrate that is heated to about 100 to 400° C. to form a second solid film containing the alkali metal and at least one transition metal; and, heating to about 300 to 1000° C. in a selected atmosphere to react the first and second films to form a homogeneous cathode film. The cathode may be incorporated into a lithium or sodium ion battery.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 18, 2013
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 8414971
    Abstract: A method for depositing a solid film of ZnO onto a substrate from a reagent solution includes a reservoir of reagent solution maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solution. The reagent solution contains a source of Zn, a source of O, and multiple ligands to further control solution stability and shelf life. The chilled solution is dispensed through a showerhead onto a substrate. The substrate is positioned in a holder that has a raised structure peripheral to the substrate to retain or impound a controlled volume (or depth) of reagent solution over the exposed surface of the substrate. The reagent solution is periodically or continuously replenished from the showerhead so that only the part of the solution directly adjacent to the substrate is heated. A heater is disposed beneath the substrate and maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solution may be initiated.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: April 9, 2013
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 8372163
    Abstract: A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400° C. using a spray deposition system. In the case of lithium, the deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500° C., to obtain a high lithium ion conducting inorganic solid state electrolyte. The method may be used for other ionic conductors to make electrolytes for various applications. The electrolyte may be incorporated into a lithium ion battery.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: February 12, 2013
    Assignee: Sisom Thin Films, LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 8349498
    Abstract: A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400° C. using a spray deposition system. In the case of lithium, the deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500° C., to obtain a high lithium ion conducting inorganic solid state electrolyte. The method may be used for other ionic conductors to make electrolytes for various applications. The electrolyte may be incorporated into a lithium ion battery.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: January 8, 2013
    Assignee: Sisom Thin Films, LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 8225744
    Abstract: An apparatus for depositing a solid film onto a substrate from a reagent solution includes reservoirs of reagent solutions maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solutions. The chilled solutions are dispensed through showerheads, one at a time, onto a substrate. One of the showerheads includes a nebulizer so that the reagent solution is delivered as a fine mist, whereas the other showerhead delivers reagent as a flowing stream. A heater disposed beneath the substrate maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solutions may be initiated. Each reagent solution contains at least one metal and either S or Se, or both. At least one of the reagent solutions contains Cu. The apparatus and its associated method of use are particularly suited to forming films of Cu-containing compound semiconductors.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 24, 2012
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 7972899
    Abstract: An apparatus for depositing a solid film onto a substrate from a reagent solution includes reservoirs of reagent solutions maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solutions. The chilled solutions are dispensed through showerheads, one at a time, onto a substrate. One of the showerheads includes a nebulizer so that the reagent solution is delivered as a fine mist, whereas the other showerhead delivers reagent as a flowing stream. A heater disposed beneath the substrate maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solutions may be initiated. Each reagent solution contains at least one metal and either S or Se, or both. At least one of the reagent solutions contains Cu. The apparatus and its associated method of use are particularly suited to forming films of Cu-containing compound semiconductors.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: July 5, 2011
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 7793611
    Abstract: An apparatus for depositing a solid film onto a substrate from a reagent solution includes a reservoir of solution maintained at a low temperature to inhibit homogeneous reactions. The solution contains multiple ligands to control temperature stability and shelf life. The chilled solution is periodically dispensed onto a substrate positioned in a holder having a raised peripheral structure that retains a controlled volume of solution over the substrate. The solution is periodically replenished so that only the part of the solution directly adjacent to the substrate is heated. A heater maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the solution may be initiated. The apparatus may also dispense excess chilled solution to cool various components within the apparatus and minimize nucleation of solids in areas other than on the substrate. The apparatus is particularly suited to forming films of II-VI semiconductors.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: September 14, 2010
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 7700161
    Abstract: An apparatus for depositing a solid film onto a substrate from a reagent solution includes a reservoir of reagent solution maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solution. The reagent solution contains multiple ligands to further control temperature stability and shelf life. The chilled solution is dispensed through a showerhead onto a substrate. The substrate is positioned in a holder that has a raised structure peripheral to the substrate to retain or impound a controlled volume (or depth) of reagent solution over the exposed surface of the substrate. The reagent solution is periodically or continuously replenished from the showerhead so that only the part of the solution directly adjacent to the substrate is heated. A heater is disposed beneath the substrate and maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solution may be initiated.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: April 20, 2010
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji