Abstract: In various embodiments, a high-density solid-state storage unit includes a plurality of flash cards. Each flash card has a flash controller that incorporates one or more resources for facilitating compression and decompression operations. In one aspect, data reduction and data reconstruction operations can be performed in-line as data is stored to and retrieved from flash memory. In another aspect, data reduction and data reconstruction operations can be performed as a service. Any one of the plurality of flash cards can be used to provide data reduction or data reconstruction services on demand for any type of data, including system data, libraries, and firmware code.
Abstract: A chassis for a storage system contains a digital chamber that houses conventional electronic components and a thermal chamber that houses non-volatile solid state memory such as flash memory. A temperature regulating system monitors temperature within the digital chamber to keep the components therein below their maximum junction temperature. The temperature regulating system tightly regulates the temperature of solid state memory chips to within a nominal operating temperature range selected to extend the lifetime and/or improve the endurance and reliability of the solid state memory. The temperature regulating system may regulate different memory chips to different nominal temperatures based on the operations being performed and lifetime factors for the memory chips including current health and prior use.
Abstract: A chassis for a network storage system contains a first thermal chamber that houses conventional electronic components and a second thermal chamber that houses non-volatile solid state memory such as flash memory. A cooling system keeps the electronics in first thermal chamber below their maximum junction temperature. Meanwhile, a temperature regulating system maintains the solid state memory in the second thermal chamber within a range of a preferred operating temperature selected to extend the lifetime and/or improve the reliability of the solid state memory. Thus, the chassis provides dual zone temperature control to improve performance of the network storage system.
Abstract: An integrated networked storage and switching apparatus comprises one or more flash memory controllers, a system controller, and a network switch integrated within a common chassis. The integration of storage and switching enables the components to share a common power supply and temperature regulation system, achieving efficient use of available space and power, and eliminating added complexity of external cables between the switch a storage devices. Additionally, the architecture enables substantial flexibility and optimization of network traffic policies for both network and storage-related traffic.
Abstract: A system for mounting a flash blade in a storage system includes a motherboard with a series of card guide cutouts for aligning flash blades. A flash blade can be aligned perpendicular to the motherboard and aligned parallel to adjacent flash blades by inserting the flash blade into one of the card guide cutouts and connecting the flash blade to a connector at one end of the cutout. This beneficially aligns the flash blade while making efficient use of the available vertical space within a chassis. The flash blade can also extend through the cutout to the other side of the motherboard. The efficient use of vertical space enables an increase in the number of solid state memory can be added to the flash blade relative to conventional designs, thereby improving capacity.