Abstract: A beamforming control module including processing circuitry may be configured to receive fixed position information indicative of a fixed geographic location of a base station, receive dynamic position information indicative of a three dimensional position of at least one mobile communication station, determine an expected relative position of a first network node relative to a second network node based on the fixed position information and the dynamic position information, and provide instructions to direct formation of a steerable beam from an antenna array of the second network node based on the expected relative position.
Abstract: An air-to-ground network communication device may include a conductive groundplane and an antenna element. The conductive groundplane may be disposed to be substantially parallel to a surface of the earth. The antenna element may extend substantially perpendicularly away from the groundplane and may have an effective length between about 1? to about 1.5?. The antenna element may be disposed at a distance of about 0.5? to about 1? from the groundplane.
Abstract: Aspects described herein relate to a network for providing air-to-ground wireless communication in various cells. The network includes a first base station array, each base station of which includes a respective first antenna array defining a directional radiation pattern that is oriented in a first direction, wherein each base station of the first base station array is disposed spaced apart from another base station of the first base station array along the first direction by a first distance. The network also includes a similar second base station array where the second base station array extends substantially parallel to the first base station array and is spaced apart from the first base station array by a second distance to form continuous and at least partially overlapping cell coverage areas between respective base stations of the first and second base station arrays.
Type:
Application
Filed:
March 15, 2013
Publication date:
September 18, 2014
Applicant:
SMARTSKY NETWORKS LLC
Inventors:
Douglas Hyslop, Andrew P. Caplan, Mike Dodson
Abstract: A network controller including processing circuitry may be configured to receive dynamic position information indicative of a three dimensional position of at least one mobile communication node, compare fixed position information indicative of fixed geographic locations of respective access points of a network to the dynamic position information to determine a relative position of the at least one mobile communication node relative to at least one of the access points based on the fixed position information and the dynamic position information, and provide network control instructions to at least one network asset based on the relative position.
Type:
Grant
Filed:
February 6, 2014
Date of Patent:
September 2, 2014
Assignee:
Smartsky Networks LLC
Inventors:
Gerard James Hayes, Elbert Stanford Eskridge, Koichiro Takamizawa
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: An aircraft may include an onboard wireless communication network. The network may include an access point disposed on the aircraft and at least one repeater station disposed spaced apart from the access point and capable of wireless communication with the access point or at least one remote sensor configured to wirelessly transmit information for delivery to the access point via a first wireless communication link. The at least one remote sensor may monitor at least one remote component of the aircraft and generating the information based on data indicative of an operational parameter or a status of the at least one remote component.
Type:
Grant
Filed:
March 12, 2013
Date of Patent:
July 22, 2014
Assignee:
Smartsky Networks LLC
Inventors:
Gerard James Hayes, Elbert Stanford Eskridge, Jr.
Abstract: A network controller including processing circuitry may be configured to receive dynamic position information indicative of a three dimensional position of at least one mobile communication node, compare fixed position information indicative of fixed geographic locations of respective access points of a network to the dynamic position information to determine a relative position of the at least one mobile communication node relative to at least one of the access points based on the fixed position information and the dynamic position information, and provide network control instructions to at least one network asset based on the relative position.
Type:
Grant
Filed:
April 9, 2013
Date of Patent:
April 1, 2014
Assignee:
Smartsky Networks LLC
Inventors:
Gerard James Hayes, Elbert Stanford Eskridge, Jr., Koichiro Takamizawa
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: A network for providing high speed data communications may include multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station employing a wireless radio access network protocol.
Abstract: This present invention is a network for providing high speed data communications. The network includes multiple terrestrial transmission stations that are located within overlapping communications range and a mobile receiver station. The terrestrial transmission stations provide a continuous and uninterrupted high speed data communications link with the mobile receiver station according to Long Term Evolution (LTE) terrestrial radio access network protocol in a mesh network configuration.