Patents Assigned to Soane Technologies, Inc.
-
Patent number: 5733483Abstract: A method and apparatus for forming on-site tinted and coated optical elements from a mold having a polymer release layer; an optical coating, such as an anti-reflective coating; a coupling agent layer to bind to the optical coating and having unreacted chemical groups; and a hard coat layer having unreacted chemical groups. The hard coat may be tinted with dyes that are standard in the art. The mold can be shipped to a lab that prepares optical elements, such as ophthalmic lenses, after the coupling agent layer is added or after the hard coat layer, optionally tinted, is added. When using the mold with a lens resin having unreacted chemical groups, the coupling agent layer, hard coat layer, optionally tinted, and optical element all crosslink as the optical element is cured to form, on-site, a durable and stable lens with chemically bound optical coatings.Type: GrantFiled: January 13, 1995Date of Patent: March 31, 1998Assignee: Soane Technologies, Inc.Inventors: David S. Soane, Theodore L. Parker, Travis D. Boone
-
Patent number: 5551663Abstract: Plastic molds for ophthalmic devices and methods of making such molds are disclosed. The plastic molds are provided with abrasion resistant, release-enhancing faces formed by coatings of particular compositions of polyacryloylated alkane polyols and alkane polyols.Type: GrantFiled: September 20, 1994Date of Patent: September 3, 1996Assignee: Soane Technologies, Inc.Inventors: Young C. Bae, Fredric J. Lim, Thomas B. Ottoboni, David S. Soane
-
Patent number: 5545367Abstract: Methods and apparatus are disclosed for the production of high precision large scale, micro and mini structures using three dimensional stereolithography. The objects formed using these methods have minimal stress between layers and low curl distortion. The objects also have low warpage because no post-cure treatment is necessary. The methods include the use of elevated pressure, elevated temperature, or sequential polymerization of polymer precursor fluid, or a combination of these, in the three dimensional stereolithographic process.Type: GrantFiled: May 27, 1993Date of Patent: August 13, 1996Assignee: Soane Technologies, Inc.Inventors: Young C. Bae, David S. Soane, Charles Crocker
-
Patent number: 5459176Abstract: Abrasion resistant, radiation curable compositions are provided for forming coatings over plastic substrates. Such compositions are particularly provided for forming an abrasion resistant, tintable coating over polycarbonate ophthalmic lenses. Generally, the radiation-curable coating comprises 10 to 50 parts of polyacryloylated alkane polyols containing up to about 20 carbon atoms and an average of at least three O-acryloyl groups; and 20 to 80 parts of polyacryloylated alkoxylated polyols containing up to about 20 carbon atoms and an average of at least three O-[acryloyl-(polyalkylene oxide)] chains, wherein each of the polyalkylene oxide chains comprises from one to 20 alkylene oxide groups.Type: GrantFiled: December 23, 1993Date of Patent: October 17, 1995Assignee: Soane Technologies, Inc.Inventors: Young C. Bae, Thomas B. Ottoboni
-
Patent number: 5278243Abstract: A high impact resistant macromolecular network is disclosed that includes a basic, stiff framework interconnected by soft, shock-absorbing multiple bridges to cushion thermoelastic stresses. The network is prepared by polymerizing or copolymerizing with vigorous agitation, an unsaturated hard material (characterized in that when homopolymerized, it forms a polymeric material that is below its glass transition temperature at ambient temperature), in the presence of a soft moiety selected from the group consisting of vinyl substituted siloxane, allyl substituted siloxane, acrylate terminated or substituted siloxane, and unsaturated hydrocarbon polymer, to form a partially polymerized mixture in which the soft moiety is homogeneously distributed; pouring the partially polymerized mixture into a mold, and then completing the polymerization without agitation. The final products are dimensionally exact and stable, transparent, easily machinable and resilient, and can be designed to have good optical properties.Type: GrantFiled: January 14, 1992Date of Patent: January 11, 1994Assignee: Soane Technologies, Inc.Inventor: David S. Soane
-
Patent number: 5243680Abstract: A package configuration for the protection/packaging/encapsulation of optical fiber couplers is described. The packaging strategy exploits symmetry in geometrical design while using material with similar thermal expansion properties to minimize thermoelastic stresses in the final assembled parts. When glass fibers are fused together or spliced in a planar waveguides, a complementary, symmetrically shaped glass piece linked to the coupler device by a chemically-tethered and crosslinked polymeric matrix, provides a stress-free as-assembled package that further maintains minimal thermoelastic stresses during temperature cycling. The packaged assembly is thus exceptionally rugged, experiencing little loss and fluctuation of coupling characteristics in installation and use.Type: GrantFiled: June 1, 1992Date of Patent: September 7, 1993Assignee: Soane Technologies, Inc.Inventor: David S. Soane
-
Patent number: 5135627Abstract: A method and compositions for separating molecules based on molecular size, shape, affinity, chirality, weight, charge, and hydrogen bonding, using a mosaic matrix formed by polymerizing a dispersion of dispersoids within a polymeric matrix. The dispersoids and matrix can be of the same or different hydrophobicity or hydrophilicity. The dispersoids can be porous or non-porous. The mosaic matrix can be used with existing chromatographic and electrophoresis apparatus to effect an enhanced separation of molecules, particularly of nucleic acids and peptides, by application of a solution and/or an electrical field to the matrix. The solution can form a pH, ionic, or composition gradient, and be applied using gravity or under pressure. The electrical field can be continuous, pulsed, or two-dimensional.Type: GrantFiled: October 15, 1990Date of Patent: August 4, 1992Assignee: Soane Technologies, Inc.Inventor: David S. Soane
-
Patent number: 5114632Abstract: A method and a device are disclosed wherein a shrinkable polymer material is formed in situ in a mold without defects and with no internal stresses. A monomer or polymer solution is injected into the mold and solidified sequentially through the mold by exposure to an agent such as ultraviolet radiation, with simultaneous addition of monomer or polymer solution into the area of the mold not yet exposed to the solidifying agent. By controlling the rate at which the solidifying agent is moved across the mold and the monomer or polymer solution is injected into the mold, the resulting product completely fills the mold and is stressfree.Type: GrantFiled: November 1, 1990Date of Patent: May 19, 1992Assignee: Soane Technologies, Inc.Inventor: David S. Soane
-
Patent number: 5110514Abstract: A method and a device are disclosed wherein a shrinkable polymer material is formed in situ in a mold without defects and with no internal stresses. A monomer or polymer solution is injected into the mold and solidified sequentially through the mold by exposure to an agent such as ultraviolet radiation, with simultaneous addition of monomer or polymer solution into the area of the mold not yet exposed to the solidifying agent. By controlling the rate at which the solidifying agent is moved across the mold and the monomer or polymer solution is injected into the mold, the resulting product completely fills the mold and is stressfree.Type: GrantFiled: May 1, 1989Date of Patent: May 5, 1992Assignee: Soane Technologies, Inc.Inventor: David S. Soane
-
Patent number: 5071531Abstract: A method and apparatus are presented for the casting of gradient gels, without voids, in confined support structures such as thin slab-type configurations. Furthermore, by using a differential activation scheme for the casting, the method makes is possible to produce such gels in slabs of capillary cross-sectional dimension. According to a preferred method, a gradient slab gel is cast by filling a countable number of grooves in a first plate with a first gelling liquid. A gel casting region for a slab gel is formed by spacing the first plate apart from a second plate so as to provide a flow path between the first and second plates which has a directional component orthogonal to the grooves. A second gelling liquid is injected into the gel casting region between the plates, such that the first liquid mixes with the second liquid as the second liquid encounters each groove, thereby forming a gelling mixture with a composition gradient.Type: GrantFiled: May 1, 1989Date of Patent: December 10, 1991Assignee: Soane Technologies, Inc.Inventor: David S. Soane
-
Patent number: 5064577Abstract: A method of forming an optical fiber defining an axis, the fiber having a dipolar dopant wherein a substantial number of the dipoles of the dopant are oriented in essentially the same direction along the axis of the fiber; the method comprising the steps of providing a vessel having a spinneret, establishing a substantially constant electric (or magnetic) field adjacent to, axially aligned with and downstream of the spinneret, forming a prefiber homogenous liquid mixture of at least one dipolar dopant and at least one polymer in the vessel, extruding the prefiber through the spinneret, drawing the extrudate through the electric (or magnetic) field to generally align the dipoles in the same direction and simultaneously elongating the extrudate while it is still in the fluid state by drawing the extrudate.Type: GrantFiled: October 6, 1989Date of Patent: November 12, 1991Assignee: Soane Technologies, Inc.Inventor: David S. Soane
-
Patent number: 5061336Abstract: A gel casting method and apparatus are used to cause a pre-gelled liquid mixture to gel sequentially in a given travelling direction, allowing still-liquid material to flow to the gelling front, replacing volume lost due to shrinkage during the change of state from a liquid to a gel. The differential gelling method provides stress-free gels free of voids common to highly stressed gels, and the method is applicable to column and slab gels, and particularly to capillary columns and very thin slab gels.Type: GrantFiled: May 1, 1989Date of Patent: October 29, 1991Assignee: Soane Technologies, Inc.Inventor: David S. Soane