Abstract: A method and device for registering a handwritten personal signature and for judging its authenticity by comparison with previously registered measured values and data derived therefrom. Signature data is acquired by registering a signature handwritten on a surface by a three-dimensional inertial sensing system having rate-of-rotation sensors and linear acceleration sensors. The data is subjected to a subsequent procedure of recognition or verification or comparison with other signatures. Hence not only tracking is performed with reference to the tip of a writing implement, but the dynamics of the signature are registered and evaluated by numerical calculation and adopted as the basis for the subsequent comparison, effectively ruling out the possibility of fraudulent duplication or tracing-over of a signature by an unauthorized third party. The dynamics i.e. acceleration and deceleration phenomena and rates of rotation as the signature are executed and effectively registered.
Abstract: A method and device for registering a handwritten personal signature and for judging its authenticity by comparison with previously registered measured values and data derived therefrom. Signature data is acquired by registering a signature handwritten on a surface by a three-dimensional inertial sensing system having rate-of-rotation sensors and linear acceleration sensors. The data is subjected to a subsequent procedure of recognition or verification or comparison with other signatures. Hence not only tracking is performed with reference to the tip of a writing implement, but the dynamics of the signature are registered and evaluated by numerical calculation and adopted as the basis for the subsequent comparison, effectively ruling out the possibility of fraudulent duplication or tracing-over of a signature by an unauthorized third party. The dynamics i.e. acceleration and deceleration phenomena and rates of rotation as the signature are executed and effectively registered.
Abstract: A method and device for registering a handwritten personal signature and for judging its authenticity by comparison with previously registered measured values and data derived therefrom. Signature data is acquired by registering a signature handwritten on a surface by a three-dimensional inertial sensing system having rate-of-rotation sensors and linear acceleration sensors. The data is subjected to a subsequent procedure of recognition or verification or comparison with other signatures. Hence not only tracking is performed with reference to the tip of a writing implement, but the dynamics of the signature are registered and evaluated by numerical calculation and adopted as the basis for the subsequent comparison, effectively ruling out the possibility of fraudulent duplication or tracing-over of a signature by an unauthorized third party. The dynamics i.e. acceleration and deceleration phenomena and rates of rotation as the signature are executed and effectively registered.
Abstract: The signature verification methods and devices disclosed herein can be used to verify signatures signed on electronic key pads and other input devices, such as signature pens. Many different aspects of a dynamic signature can be measured in an attempt to verify the signature, including, but not limited to spatial measurements, measurements over time, and frequency. These measurements can be of points on a signature, but they can also be pressure, velocity, and acceleration, to name just a few. These different aspects can then be analyzed using, for example, time series, and spectral similarities. Further, the spectral similarities can be analyzed using wavelet-transforms. In another embodiment, these analysis systems and methods can be applied to written signatures as well as dynamic written signatures.