Abstract: According to an aspect of the inventive concept, there is provided an interference cancellation repeater includes: a signal transceiver configured to cancel an interference signal from an RF input signal and to output an RF output signal from which the interference signal has been canceled; and a controller configured to control a power mode of the signal transceiver by measuring traffic of a first signal in the signal transceiver.
Abstract: A method of recovering a synchronization detection error according to an embodiment includes: determining whether a base station signal input to a head-end device is detected; determining whether a head-end signal output from the head-end device, which is obtained by processing the base station signal by the head-end device, is detected by a lower device of the head-end device; determining whether synchronization of the head-end signal is detected based on the head-end signal input to the lower device; and changing a set frequency band or performing automatic gain control of the head-end device based on whether the base station signal is detected, whether the head-end signal is detected, and whether the synchronization of the head-end signal is detected.
Abstract: A repeater including an analog attenuator configured to attenuate an analog signal in response to a first control signal; an analog to digital converter (ADC) configured to convert the attenuated analog signal into a digital signal; a digital attenuator configured to attenuate the digital signal in response to a second control signal; and an attenuation controller configured to calculate average power and peak power of the attenuated digital signal, determine an attenuation value for each value of the calculated average power and peak power, and generate at least one of the first and second control signals based on the determined attenuation values.
Abstract: A distributed antenna system includes a plurality of head-end units for each receiving mobile communication signals from at least one corresponding base station, a hub unit communicatively coupled to the plurality of head-end units, and a plurality of remote units communicatively coupled to the hub unit, wherein the hub unit configured to distribute the mobile communication signals received from each of the plurality of head-end units to the plurality of remote units, wherein each of the plurality of remote units is remotely disposed to transmit the distributed mobile communication signals to a terminal in service coverage, and wherein the hub unit includes a mixing processing stage configured to perform digital mixing processing on the mobile communication signals respectively received from the plurality of head-end units, and a crest factor reduction (CFR) module disposed posterior to the mixing processing stage, with respect to a signal transmission direction.
Abstract: A communication module assembly includes a case; a communication module accommodated in the case and including at least two module terminals; and a connection member including connection terminals respectively connected to the module terminals, and a bridge unit configured to connect the connection terminals, wherein when the connection terminals and the module terminals are disconnected, the connection terminals are electrically connected to each other through the bridge unit.
Abstract: According to an embodiment of the inventive concept, an up-down converter includes a first mixer configured to convert an input radio frequency (RF) signal into an intermediate frequency (IF) signal using a first local signal; an IF filter configured to filter the IF signal converted by the first mixer; a second mixer configured to convert the IF signal, which has been filtered by the IF filter, into an output RF signal using a second local signal; and a local oscillator configured to control a frequency of the first local signal and the second local signal based on a frequency of the input RF signal.
Abstract: The inventive concept relate to a device and method of managing data of a distributed antenna system, and more particularly, to a data management device to efficiently update firmware of devices constituting a distributed antenna system, and a method of the same.
Abstract: Provided is an interference cancellation relay device. The interference cancellation relay device includes: an interference cancellation unit cancelling an interference signal from an input signal and outputting the input signal from which the interference signal is removed; a gain control unit controlling a gain of an output signal of the interference cancellation unit; and a pre-distortion unit distorting the output signal of the interference cancellation unit, of which the gain is controlled by the gain control unit.
Abstract: A head-end device according to an embodiment includes: a plurality of base station interfacing units configured to interface each of transmission/reception signals that are exchanged between the head-end device and a plurality of base stations; and a head-end control unit configured to receive an upper interfacing unit signal transmitted from an upper base station interfacing unit from among the plurality of base station interfacing units, and sequentially transmit the received upper interfacing unit signal to a lower base station interfacing unit.
Abstract: A headend device includes a spectrum analysis unit configured to analyze a frequency spectrum of a plurality of base station signals to detect characteristic information of the plurality of the base station signals, a control unit configured to generate a control signal to control a power of the plurality of the base station signals on the basis of the characteristic information detected, and a plurality of RF units configured to receive at least one of the plurality of the base station signals and adjust the power of the base station signals received according to the control signal and output the power-adjusted base station signals.
Abstract: Disclosed is a base station device including a an interface board, which is located in a housing and has a first surface and a second surface opposite to the first surface, comprising a relay connector of which one end is exposed on the first surface and an opposite end is exposed on the second surface; a base station signal matching unit mounted on the first surface and comprising a first connector coupled to the one end of the relay connector; and a base station signal processing unit mounted on the second surface and comprising a second connector coupled to the opposite end of the relay connector.
Abstract: A monitoring device for a distributed antenna system including at least two node units communicatively coupled to each other transmits, to at least one target node unit among the node units, a data dump command for a first target signal passing through a first signal path in the target node unit. The monitoring device receives, from the target node unit, response data corresponding to the data dump command. The monitoring device generates first quality information indicative of the quality of the first target signal by using the response data.
Abstract: An interference cancellation repeater including a subtractor configured to subtract an estimated signal from a digital reception signal and output an interference canceled signal; a first power calculator configured to calculate power of the digital reception signal; a second power calculator configured to calculate power of the interference canceled signal; and an attenuation controller configured to compare a power value of the calculated digital reception signal with a power value of the calculated interference canceled signal and determine an attenuation value of the interference canceled signal according to the comparison result.
Abstract: A passive intermodulation (PIM) measurement device for measuring a PIM in at least one of installation equipments and a distribution network within a distributed antenna system (DAS), the PIM measurement device included in a relay unit of the DAS the PIM measurement device includes a pulse generation unit a PIM detection unit and a controller. The pulse generation unit generates a two-tone pulse signal having frequencies different from each other. The PIM detection unit detects intermodulation (IM) signals fed back from the installation equipments or the distribution network in the DAS corresponding to the propagation of the two-tone pulse signal. The controller detects PIM generation information in the DAS based on the fed-back IM signal.
Abstract: A distributed antenna system (DAS) according to an aspect of the inventive concept includes a first node unit for receiving first digital data in accordance with a digital interface standard from a base station, converting the first digital data into second digital data in accordance with a DAS frame standard, and a second node unit for receiving the second digital data from the first node unit, and restoring the first digital data based on the second digital data.
Abstract: A repeater including an analog attenuator configured to attenuate an analog signal in response to a first control signal; an analog to digital converter (ADC) configured to convert the attenuated analog signal into a digital signal; a digital attenuator configured to attenuate the digital signal in response to a second control signal; and an attenuation controller configured to calculate average power and peak power of the attenuated digital signal, determine an attenuation value for each value of the calculated average power and peak power, and generate at least one of the first and second control signals based on the determined attenuation values.
Abstract: According to an aspect of the inventive concept, there is provided a crest factor reduction (CFR) core, including: a clipper clipping an input signal; a delay unit delaying the input signal; a first subtractor subtracting the clipped input signal from the delayed input signal; an error shaping filter filtering the subtracted signal for shaping an error which occurs by the clipping of the input signal; a digital filter filtering the input signal for cancelling noise of the input signal; and a second subtractor subtracting the filtered subtracted signal from the filtered input signal.
Abstract: A base station signal matching device is a base station signal matching device mounted in a distributed antenna system for amplifying a received base station signal and transmitting the amplified base station signal to a user terminal. The base station signal matching device includes a first unit for generating first and second branch base station signals by using a power division function based on the base station signal, and transmitting the second branch base station signal to a third unit, and a second unit for matching the first branch base station signal to be suitable for signal processing of the distributed antenna system.
Abstract: Provided is an interference cancellation relay device. The interference cancellation relay device includes: an interference cancellation unit cancelling an interference signal from an input signal and outputting the input signal from which the interference signal is removed; a gain control unit controlling a gain of an output signal of the interference cancellation unit; and a pre-distortion unit distorting the output signal of the interference cancellation unit, of which the gain is controlled by the gain control unit.
Abstract: Disclosed is an optical network system including a upper network equipment, a lower network equipment, and a plurality of transfer network equipments connecting the upper network equipment and the lower network equipment through independent optical links, wherein the lower network equipment performs switching such that transmission and reception of an optical signal are performed through an optical link of a standby line when a failure occurs in at least one of an optical link used as a working line, an optical interface device associated with the working line in the upper network equipment, and a transfer network equipment associated with the working line.
Type:
Application
Filed:
December 4, 2017
Publication date:
March 29, 2018
Applicant:
SOLiD, INC.
Inventors:
Taehyeong KIM, Jongyeong LIM, Jongsin KIM, Eunho LEE