Patents Assigned to Solus Micro Technologies, Inc.
  • Publication number: 20020150842
    Abstract: Elastomer thin films can be lithographically patterned by using an UV curable polydimethylsiloxane, rather than replica molding of thermal cure elastomers. The fabrication method of such patterned elastomers consists of elastomer formulation, substrate modification, spinning elastomer, pattern development, and possible a backside etch of the substrate.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Applicant: Solus Micro Technologies, Inc.
    Inventor: Ming Li
  • Patent number: 6430333
    Abstract: A sequence of MEMS processing steps are used to construct a 2D optical switch on a single substrate. In a typical optical switch configuration, an array of hinged micromirrors are supported by an array of posts at a 45° angle to the input and output optical paths and positioned parallel to the substrate either above, below or, perhaps, in the optical paths. The application of a voltage between the mirror and its control electrodes switches the mirror to a vertical position where it intercepts and deflects light travelling down the optical paths. The posts are suitably oriented at a 90° angle with respect to the mirror hinges so that they do not interfere with the optical paths and, may be configured to function as baffles to reduce crosstalk between adjacent optical paths.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: August 6, 2002
    Assignee: Solus Micro Technologies, Inc.
    Inventors: Michael J. Little, Andrei M. Shkel
  • Patent number: 6396976
    Abstract: An array of micromachined mirrors are arranged on a first substrate at the intersections of input and output optical paths and oriented at approximately forty-five degrees to the paths. An array of split-electrodes are arranged on a second substrate above the respective mirrors. Each split electrode includes a first electrode configured to apply an electrostatic force that rotates the mirror approximately ninety degrees into one of the input optical paths to deflect the optical signal along one of the output optical paths, and a second electrode configured to apply an electrostatic force that maintains the mirror position. Stability may be improved by using the first and second electrodes in combination to first actuate the mirror and then balance the forces on the mirror to maintain its position. Reproducibly accurate positioning of the mirrors requires either the use of active positioning control or of mechanical stops.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: May 28, 2002
    Assignee: Solus Micro Technologies, Inc.
    Inventors: Michael J. Little, John Jeffrey Lyon, John E. Bowers, Roger Helkey
  • Publication number: 20020003925
    Abstract: A low cost waveguide tunable Bragg grating provides a flat passband and minimal crosstalk. A compliant material forms a waveguide that is imprinted with a Bragg grating and mounted on a MEMS actuator. Entropic materials such as elastomers, aerogels or other long-chain polymers may provide the necessary compliance. The application of a drive signal to the actuator deforms (squeezes or stretches) the compliant material thereby changing the Bragg spacing and shifting the resonant wavelength. The MEMS actuator can be an electrostatically or electromagnetically actuated comb-drive.
    Type: Application
    Filed: April 11, 2001
    Publication date: January 10, 2002
    Applicant: Solus Micro Technologies, Inc.
    Inventors: Michael J. Little, John Terry Bailey
  • Publication number: 20010055147
    Abstract: A cost-effective tunable optical component uses entropic, rather than enthalpic, materials to provide a compliant member that supports the optical element and is driven by an electrostatic actuator. Entropic materials exhibit an entropic plateau region over a wide frequency range with a Young's modulus much lower than enthalpic materials, linear elastic behavior over a wide deformation range, and, in certain geometries, energy and stress behavior that tend to stabilize the optical element during deformation. The compliant member can be configured in a variety of geometries including compression, tension, tensile/compressive and shear and of a variety of materials including elastomers, aerogels or other long chained polymers.
    Type: Application
    Filed: March 20, 2001
    Publication date: December 27, 2001
    Applicant: Solus Micro Technologies, Inc.
    Inventors: Michael J. Little, Ravi J. Verma
  • Patent number: 6123985
    Abstract: A membrane-actuated charge controlled mirror (CCM) that exhibits increased deflection range, reduced beam current and improved electrostatic stability is fabricated using a combination of flat panel manufacturing along with traditional MEMS techniques. More specifically, a unique combination of five masking layers is used to fabricate a number of CCMs on a large glass panel. At the completion of the MEMS processing, the glass panel is diced into individual CCMs. Thereafter, the polymer mirror and membrane release layers are simultaneously released through vent holes in the membrane to leave the free-standing CCM.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: September 26, 2000
    Assignee: Solus Micro Technologies, Inc.
    Inventors: William P. Robinson, LeRoy H. Hackett, Philip G. Reif