Patents Assigned to SOLUS TECHNOLOGIES LIMITED
  • Patent number: 10505345
    Abstract: A mode locking semiconductor disk laser (SDL) comprising a resonator terminated by first and second mirrors and folded by a third mirror is presented. The third mirror includes a semiconductor disk laser (SDL) suitable for generating a resonator field having a predetermined central wavelength ?0, while the second mirror includes an intensity saturable mirror suitable for mode locking the resonator field at the predetermined wavelength. The central wavelength of the reflectivity profile of the first and or second mirrors is shifted to a wavelength shorter than the central wavelength ?0 to suppress gain at wavelengths longer than the central wavelength ?0. By mismatching the reflectivity profile of the first and or second mirrors to that of the desired output wavelength provides a stable mode locked laser with significantly reduced noise.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: December 10, 2019
    Assignee: Solus Technologies Limited
    Inventors: Craig James Hamilton, Graeme Peter Alexander Malcolm
  • Patent number: 10069279
    Abstract: A self mode locking laser and corresponding method is described. The laser comprises a resonator (2) terminated by first (3) and second (4) mirrors and folded by a third mirror (5). The third mirror comprises a reflector (15) surmounted by a multilayer semiconductor gain medium (16) that includes at least one quantum well layer and an optical Kerr lensing layer (20). A perturbator is also included that provides a means to induce a perturbation on an intensity of one or more cavity modes of the resonator. The pertubator is employed to induce a small perturbation on the intensity of the cavity modes of the resonator which is sufficient for the optical Kerr lensing layer to induce mode locking on the output field. The second mirror (4) comprises an intensity saturable mirror that provides a means for reducing the pulse widths of the generated output field e.g. to around 100 fs.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: September 4, 2018
    Assignee: SOLUS TECHNOLOGIES LIMITED
    Inventors: Graeme Peter Alexander Malcolm, Craig James Hamilton
  • Patent number: 9966732
    Abstract: An optical amplifier is described. The optical amplifier (1) comprises a semiconductor disk gain medium (2) including at least one quantum well layer (9) and a pump field source (17) for generating an optical pump field (3) for the semiconductor disk gain medium. The optical amplifier acts to generate an output optical field (5) from an input optical field (4) received by the optical amplifier and arranged to be incident upon the semiconductor disk gain medium. Employing a semiconductor disk gain medium within the optical amplifier allows it to be optically pumped and thus provided for increased stability and beam quality of the output optical field while allowing for the design of optical amplifiers which can operate across a broad range of wavelengths. The optical amplifier may be employed with continuous wave or pulsed input optical fields.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: May 8, 2018
    Assignee: SOLUS TECHNOLOGIES LIMITED
    Inventors: Craig James Hamilton, Graeme Peter Alexander Malcolm
  • Patent number: 9941657
    Abstract: A passively mode-locking laser and corresponding method is described. The laser comprises a resonator (2) terminated by first (3) and second (4) mirrors and folded by a third (5) and fourth (6) mirror. The third mirror comprises a reflector (14) surmounted by a multilayer semiconductor gain medium (15) including at least one quantum well layer while the second mirror (4) comprises an intensity saturable mirror. The resonator is configured to provide a cross sectional area of an intra cavity resonating field on the intensity saturable mirror that is greater than or equal to a cross sectional area of the intra cavity resonating field on the multilayer semiconductor gain medium. This arrangement provides a passively mode-locking laser that exhibits increased stability when compared to those systems known in the art.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: April 10, 2018
    Assignee: SOLUS TECHNOLOGIES LIMITED
    Inventors: Craig James Hamilton, Graeme Peter Alexander Malcolm
  • Patent number: 9722395
    Abstract: The present invention describes a method and apparatus for mounting a semiconductor disc laser (SDL). In particular there is described a cooling apparatus assembly (12) for mounting the semiconductor disc laser (1) the cooling apparatus assembly comprising a crystalline heat spreader (8) made of diamond, sapphire or SiC and optically contacted to the SDL (1). The apparatus further comprises a heatsink (13) made of copper and a recess (16) located on a first surface (15) of the heatsink. A pliable filler material (17) which may be In or an In alloy is provided within the recess (16) such that when a sealing plate (19) is fastened to the heatsink the SDL (1) is hermetically sealed within the recess. Hermetically sealing the SDL within the recess is found to significantly increase the lifetime of the device comprising the SDL. The heat sink (13) may be water cooled with pipes (14) delivering the water. In case the sealing plate (19) is made from for example Invar, it has an aperture (20).
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 1, 2017
    Assignee: SOLUS TECHNOLOGIES LIMITED
    Inventors: Craig James Hamilton, Gareth Thomas Maker
  • Patent number: 9620932
    Abstract: The present invention describes a self mode locking laser and a method for self mode locking a laser. The laser (1) comprises a resonator terminated by first (3) and second (4) mirrors and folded by a third mirror (5). The third mirror comprises a single distributed Bragg reflector (17) upon which is mounted a multilayer semiconductor gain medium (18) and which includes at least one quantum well layer and an optical Kerr lensing layer (22). Self mode locking may be achieved by configuring the laser resonator such that the lensing effect of the Kerr lensing layer acts to reduce an astigmatism deliberately introduced to the cavity mode. The self mode locking of the laser may be further enhanced by selecting the length of the resonator such that a round trip time of a cavity mode is matched with an upper-state lifetime of one or more semiconductor carriers located within the gain medium.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: April 11, 2017
    Assignee: SOLUS TECHNOLOGIES LIMITED
    Inventors: Craig James Hamilton, Graeme Peter Alexander Malcolm, Lukasz Kornaszewski
  • Publication number: 20160322786
    Abstract: A self mode locking laser and corresponding method is described. The laser comprises a resonator (2) terminated by first (3) and second (4) mirrors and folded by a third mirror (5). The third mirror comprises a reflector (15) surmounted by a multilayer semiconductor gain medium (16) that includes at least one quantum well layer and an optical Kerr lensing layer (20). A perturbator is also included that provides a means to induce a perturbation on an intensity of one or more cavity modes of the resonator. The pertubator is employed to induce a small perturbation on the intensity of the cavity modes of the resonator which is sufficient for the optical Kerr lensing layer to induce mode locking on the output field. The second mirror (4) comprises an intensity saturable mirror that provides a means for reducing the pulse widths of the generated output field e.g. to around 100 fs.
    Type: Application
    Filed: December 10, 2014
    Publication date: November 3, 2016
    Applicant: SOLUS TECHNOLOGIES LIMITED
    Inventors: Graeme Peter Alexander MALCOLM, Craig James HAMILTON
  • Patent number: 9461434
    Abstract: The present invention describes a self mode locking laser and a method for self mode locking a laser. The laser (1) comprises a resonator terminated by first (3) and second (4) mirrors and folded by a third mirror (5). The third mirror comprises a single distributed Bragg reflector (17) upon which is mounted a multilayer semiconductor gain medium (18) and which includes at least one quantum well layer and an optical Kerr lensing layer (22). Self mode locking may be achieved by configuring the laser resonator such that the lensing effect of the Kerr lensing layer acts to reduce an astigmatism deliberately introduced to the cavity mode. The self mode locking of the laser may be further enhanced by selecting the length of the resonator such that a round trip time of a cavity mode is matched with an upper-state lifetime of one or more semiconductor carriers located within the gain medium.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: October 4, 2016
    Assignee: SOLUS TECHNOLOGIES LIMITED
    Inventors: Craig James Hamilton, Graeme Peter Alexander Malcolm, Lukasz Kornaszewski
  • Publication number: 20150063389
    Abstract: The present invention describes a self mode locking laser and a method for self mode locking a laser. The laser (1) comprises a resonator terminated by first (3) and second (4) mirrors and folded by a third mirror (5). The third mirror comprises a single distributed Bragg reflector (17) upon which is mounted a multilayer semiconductor gain medium (18) and which includes at least one quantum well layer and an optical Kerr lensing layer (22). Self mode locking may be achieved by configuring the laser resonator such that the lensing effect of the Kerr lensing layer acts to reduce an astigmatism deliberately introduced to the cavity mode. The self mode locking of the laser may be further enhanced by selecting the length of the resonator such that a round trip time of a cavity mode is matched with an upper-state lifetime of one or more semiconductor carriers located within the gain medium.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 5, 2015
    Applicant: SOLUS TECHNOLOGIES LIMITED
    Inventors: Craig James Hamilton, Graeme Peter Alexander Malcolm, Lukasz Kornaszeski