Abstract: Provided is a fingerprint sensor including one or more mechanical devices for capturing the fingerprint. The mechanical devices include a matrix of pillars and are configured to be mechanically damped based upon an applied load. A q factor of the pillars is optimized by adjusting a distance between pillars within the matrix in accordance with a quarter shear wavelength at an operating wavelength.
Abstract: Provided is a method for analyzing a fingerprint, including storing a captured fingerprint in a memory; and analyzing the stored fingerprint using acoustic sensing principles.
Abstract: Provided is a fingerprint sensor including one or more mechanical devices for capturing the fingerprint. The resonators are configured to be mechanically damped based upon an applied load.
Abstract: Provided is a method for determining a resonant frequency of a biometric sensor. The method includes obtaining first pixel data from a first scan by scanning the biometric sensor with a first frequency. Second pixel data is obtained from a second scan by scanning the biometric sensor with a second frequency that is different from the first frequency. A respective first and second reference value is calculated from the first and the second pixel data. A highest reference value is determined from the first and the second reference values. The first or the second frequency is selected as the resonant frequency based on the highest reference value.
Abstract: Methods and apparatus for processing biometric digit data variously include scanning a digit in a transverse direction relative to an array of sensor elements, detecting the scanned digit and/or a predetermined characteristic of the scanned digit, outputting from individual sensor elements of the array of sensor elements respective continuous streams of biometric data associated with the scanned digit, discrete sampling the respective continuous streams of data, and reconstructing the discrete sampled data. The discrete sampled data may be directly reconstructed, e.g., in accordance with a reconstruction characteristic associated with detecting and/or discrete sampling the scanned digit, to form a biometric characteristic image associated with the digit. Optionally, the respective continuous streams of data may be stored for later discrete sampling, or discrete sampled data may be stored for later reconstruction to form a biometric characteristic image associated with the digit.
Type:
Application
Filed:
May 12, 2008
Publication date:
November 12, 2009
Applicant:
Sonavation, Inc.
Inventors:
Richard Irving, Omid S. Jahromi, David B. Clarke
Abstract: Provided is a method of arranging a plurality of sensor elements to form a sensor array. The method includes arranging the plurality of elements to form two or more sub-rows along an axis. Elements in a first of the two or more sub-rows are positioned in a staggered arrangement with the elements in a second of the two or more sub-rows.
Abstract: Provided is a method for analyzing image slices. The method includes extracting first and second sub-slices from first and second image slices, respectively, and computing a shift between the first and second image slices based on the first and second sub-slices. The first and second sub-slices overlap. Also provided is a method for controlling a cursor on a screen. The method includes determining a shift between a first image slice and a second image slice and determining a displacement of the cursor on the screen based on the determined shift.
Abstract: Provided is a method for analyzing image slices. The method includes extracting first and second sub-slices from first and second image slices, respectively, and computing a shift between the first and second image slices based on the first and second sub-slices. The first and second sub-slices overlap. Also provided is a system for analyzing image slices. The system includes an extraction module configured to extract first and second sub-slices from first and second image slices, respectively, and a shift computation module configured to compute a shift between the first and second image slices based on the first and second sub-slices of the extracted sub-slices.
Abstract: Provided is a method for dynamic optimization of a biometric sensor. The method includes receiving image data having pixel values. The pixel values are processed to determine a bias. An offset adjustment is determined to mitigate the bias. The biometric sensor is adjusted with the offset adjustment.
Abstract: Provided is a multiplexer for a biometric apparatus. The multiplexer includes a plurality of first conductors coupled to the first ends of piezo ceramic elements in corresponding rows and a plurality of first switches each of which is coupled to a respective one of the first conductors and a plurality of second conductors coupled to the second ends of piezo ceramic elements in corresponding columns. The multiplexer also includes a plurality of second switches each of which is coupled to a respective one of the second conductors. The first conductors are approximately orthogonal to the second conductors, and the first switches are controlled to couple a signal output from an output port of the signal generator to a particular piezo ceramic element of the at least twenty five thousand piezo ceramic elements. The second switches are controlled to couple a signal associated with the particular piezo ceramic element of the at least twenty five thousand piezo ceramic elements to an input port of the processor.
Abstract: The present invention provides an apparatus for sensing biometric information in a finger with piezo ceramic elements. In one embodiment, the apparatus includes an array of discrete piezo ceramic elements and filler. The array of discrete piezo ceramic elements is responsive to acoustic characteristics of parts of the finger. The filler is distributed between the discrete piezo ceramic elements and provides acoustic attenuation and electric isolation between the discrete piezo ceramic elements. A protective layer can receive a ridge pattern of the finger positioned proximate to the array. Air in valleys between ridges of the ridge pattern of the finger acts as an acoustic barrier. A backing layer (air or foam) can also be provided.