Patents Assigned to Sonomotion, Inc.
  • Patent number: 11026706
    Abstract: Disclosed herein are ultrasound systems comprising a plurality of transducers configured to work in concert to produce a customizable beam profile through the additive effects of multiple pulses. As an example, uniform and wide beam profiles can be generated using transducer elements that cannot independently generate such beam profiles. Related methods, systems, and computer-readable media are all disclosed.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: June 8, 2021
    Assignees: University of Washington, SonoMotion Inc.
    Inventors: Adam D. Maxwell, Doug Corl
  • Patent number: 10667831
    Abstract: Disclosed herein are ultrasonic probes and systems incorporating the probes. The probes are configured to produce an ultrasonic therapy exposure that, when applied to a kidney stone, will exert an acoustic radiation force sufficient to produce ultrasonic propulsion. Unlike previous probes configured to produce ultrasonic propulsion, however, the disclosed probes are engineered to produce a relatively large (both wide and long) therapy region effective to produce ultrasonic propulsion. This large therapy region allows the probe to move a plurality of kidney stones (or fragments from lithotripsy) in parallel, thereby providing the user the ability to clear several stones from an area simultaneously. This “broadly focused” probe is, in certain embodiments, combined in a single handheld unit with a typical ultrasound imaging probe to produce real-time imaging. Methods of using the probes and systems to move kidney stones are also provided.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: June 2, 2020
    Assignees: University of Washington, Sonomotion, Inc.
    Inventors: Michael R. Bailey, Bryan Cunitz, Barbrina Dunmire, Adam Maxwell, Oren Levy
  • Publication number: 20170245874
    Abstract: Disclosed herein are ultrasonic probes and systems incorporating the probes. The probes are configured to produce an ultrasonic therapy exposure that, when applied to a kidney stone, will exert an acoustic radiation force sufficient to produce ultrasonic propulsion. Unlike previous probes configured to produce ultrasonic propulsion, however, the disclosed probes are engineered to produce a relatively large (both wide and long) therapy region effective to produce ultrasonic propulsion. This large therapy region allows the probe to move a plurality of kidney stones (or fragments from lithotripsy) in parallel, thereby providing the user the ability to clear several stones from an area simultaneously. This “broadly focused” probe is, in certain embodiments, combined in a single handheld unit with a typical ultrasound imaging probe to produce real-time imaging. Methods of using the probes and systems to move kidney stones are also provided.
    Type: Application
    Filed: October 19, 2015
    Publication date: August 31, 2017
    Applicants: University of Washington, Sonomotion, Inc.
    Inventors: Michael R. Bailey, Bryan Cunitz, Barbrina Dunmire, Adam Maxwell, Oren Levy