Patents Assigned to Soraa Laser Diode, Inc.
  • Patent number: 10938182
    Abstract: The present invention provides a device and method for an integrated white colored electromagnetic radiation source using a combination of laser diode excitation sources based on gallium and nitrogen containing materials and light emitting source based on phosphor materials. In this invention a violet, blue, or other wavelength laser diode source based on gallium and nitrogen materials is closely integrated with phosphor materials, such as yellow phosphors, to form a compact, high-brightness, and highly-efficient, white light source.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: March 2, 2021
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy, Eric Goutain
  • Patent number: 10923878
    Abstract: A system and method for providing laser diodes with broad spectrum is described. GaN-based laser diodes with broad or multi-peaked spectral output operating are obtained in various configurations by having a single laser diode device generating multiple-peak spectral outputs, operate in superluminescene mode, or by use of an RF source and/or a feedback signal. In some other embodiments, multi-peak outputs are achieved by having multiple laser devices output different lasers at different wavelengths.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 16, 2021
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Mathew C. Schmidt, Yu-Chia Chang
  • Patent number: 10904506
    Abstract: A laser illumination or dazzler device and method. More specifically, examples of the present invention provide laser illumination or dazzling devices power by one or more violet, blue, or green laser diodes characterized by a wavelength from about 390 nm to about 550 nm. In some examples the laser illumination or dazzling devices include a laser pumped phosphor wherein a laser beam with a first wavelength excites a phosphor member to emit electromagnetic at a second wavelength. In various examples, laser illumination or dazzling devices according to the present invention include polar, non-polar, or semi-polar laser diodes. In a specific example, a single laser illumination or dazzling device includes a plurality of violet, blue, or green laser diodes. There are other examples as well.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: January 26, 2021
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy
  • Patent number: 10903625
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 26, 2021
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Alexander Sztein, Po Shan Hsu
  • Patent number: 10903623
    Abstract: The present disclosure provides a method and structure for producing large area gallium and nitrogen engineered substrate members configured for the epitaxial growth of layer structures suitable for the fabrication of high performance semiconductor devices. In a specific embodiment the engineered substrates are used to manufacture gallium and nitrogen containing devices based on an epitaxial transfer process wherein as-grown epitaxial layers are transferred from the engineered substrate to a carrier wafer for processing. In a preferred embodiment, the gallium and nitrogen containing devices are laser diode devices operating in the 390 nm to 425 nm range, the 425 nm to 485 nm range, the 485 nm to 550 nm range, or greater than 550 nm.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: January 26, 2021
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring
  • Patent number: 10880005
    Abstract: A packaged integrated white light source configured for illumination and communication or sensing comprises one or more laser diode devices. An output facet configured on the laser diode device outputs a laser beam of first electromagnetic radiation with a first peak wavelength. The first wavelength from the laser diode provides at least a first carrier channel for a data or sensing signal.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: December 29, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Paul Rudy, Vlad Novotny
  • Patent number: 10879674
    Abstract: An optical device includes a gallium and nitrogen containing substrate comprising a surface region configured in a (20-2-1) orientation, a (30-3-1) orientation, or a (30-31) orientation, within +/?10 degrees toward c-plane and/or a-plane from the orientation. Optical devices having quantum well regions overly the surface region are also disclosed.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: December 29, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, You-Da Lin, Christiane Elsass
  • Patent number: 10879673
    Abstract: The embodiments described herein provide a device and method for an integrated white colored electromagnetic radiation source using a combination of laser diode excitation sources based on gallium and nitrogen containing materials and light emitting source based on phosphor materials. A violet, blue, or other wavelength laser diode source based on gallium and nitrogen materials may be closely integrated with phosphor materials, such as yellow phosphors, to form a compact, high-brightness, and highly-efficient, white light source. The phosphor material is provided with a plurality of scattering centers scribed on an excitation surface or inside bulk of a plate to scatter electromagnetic radiation of a laser beam from the excitation source incident on the excitation surface to enhance generation and quality of an emitted light from the phosphor material for outputting a white light emission either in reflection mode or transmission mode.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: December 29, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy, Eric Goutain, Troy Trottier, Melvin McLaurin, James Harrison, Sten Heikman, Michael Cantore
  • Patent number: 10873395
    Abstract: A smart light source configured for visible light communication. The light source includes a controller comprising a modem configured to receive a data signal and generate a driving current and a modulation signal based on the data signal. Additionally, the light source includes a light emitter configured as a pump-light device to receive the driving current for producing a directional electromagnetic radiation with a first peak wavelength in the ultra-violet or blue wavelength regime modulated to carry the data signal using the modulation signal. Further, the light source includes a pathway configured to direct the directional electromagnetic radiation and a wavelength converter optically coupled to the pathway to receive the directional electromagnetic radiation and to output a white-color spectrum. Furthermore, the light source includes a beam shaper configured to direct the white-color spectrum for illuminating a target of interest and transmitting the data signal.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: December 22, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Paul Rudy, Vlad Novotny
  • Patent number: 10862274
    Abstract: Optical devices having a structured active region configured for selected wavelengths of light emissions are disclosed.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: December 8, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventor: James W. Raring
  • Patent number: 10862272
    Abstract: A gallium- and nitrogen-containing laser device including an etched facet with surface treatment to improve an optical beam is disclosed.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: December 8, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Mathew C. Schmidt, Bryan Ellis
  • Patent number: 10862273
    Abstract: Optical devices having a structured active region configured for selected wavelengths of light emissions are disclosed.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: December 8, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventor: James W. Raring
  • Patent number: 10854777
    Abstract: A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 1, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Patent number: 10854776
    Abstract: A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 1, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Patent number: 10854778
    Abstract: A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: December 1, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Patent number: 10816801
    Abstract: The present invention is directed to wearable display technologies. More specifically, various embodiments of the present invention provide wearable augmented reality glasses incorporating projection display systems where one or more laser diodes are used as light source for illustrating images with optical delivery to the eye using transparent waveguides. In one set of embodiments, the present invention provides wearable augmented reality glasses incorporating projector systems that utilize transparent waveguides and blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides wearable augmented reality glasses incorporating projection systems having digital lighting processing engines illuminated by blue and/or green laser devices with optical delivery to the eye using transparent waveguides.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: October 27, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Paul Rudy, James W. Raring, Eric Goutain, Hua Huang
  • Patent number: 10809606
    Abstract: A structured phosphor device includes a frame member comprising wall regions separating multiple openings of window regions. Further, the structured phosphor device includes a phosphor material filled in each of the multiple openings with a first surface thereof being exposed to an excitation light from one or more laser sources to generate an emitted light out of each window region. Additionally, the structured phosphor device includes an anti-reflective film overlying the first surface of the phosphor material. Furthermore, the structured phosphor device includes a substrate attached to a second surface of the phosphor material in each of the multiple openings. Alternatively, the structured phosphor device includes an array of phosphor pixels dividing a plate of single-crystalline or poly-crystalline phosphor material separated by optically reflective and thermally conductive walls. A dynamic lighting system based on the arrays of phosphor pixels for single or full color image projection is also disclosed.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: October 20, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Vlad Joseph Novotny, Troy Trottier, James W. Raring, Paul Rudy
  • Patent number: 10784960
    Abstract: A packaged integrated white light source configured for illumination and communication or sensing comprises one or more laser diode devices. An output facet configured on the laser diode device outputs a laser beam of first electromagnetic radiation with a first peak wavelength. The first wavelength from the laser diode provides at least a first carrier channel for a data or sensing signal.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: September 22, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Paul Rudy, Vlad Novotny
  • Patent number: 10771155
    Abstract: A smart light source configured for visible light communication. The light source includes a controller comprising a modem configured to receive a data signal and generate a driving current and a modulation signal based on the data signal. Additionally, the light source includes a light emitter configured as a pump-light device to receive the driving current for producing a directional electromagnetic radiation with a first peak wavelength in the ultra-violet or blue wavelength regime modulated to carry the data signal using the modulation signal. Further, the light source includes a pathway configured to direct the directional electromagnetic radiation and a wavelength converter optically coupled to the pathway to receive the directional electromagnetic radiation and to output a white-color spectrum. Furthermore, the light source includes a beam shaper configured to direct the white-color spectrum for illuminating a target of interest and transmitting the data signal.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: September 8, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Paul Rudy, Vlad Novotny
  • Patent number: 10749315
    Abstract: A multi-wavelength light emitting device is manufactured by forming first and second epitaxial materials overlying first and second surface regions. The first and second epitaxial materials are patterned to form a plurality of first and second epitaxial dice. At least one of the first plurality of epitaxial dice and at least one of the second plurality of epitaxial dice are transferred from first and second substrates, respectively, to a carrier wafer by selectively etching a release region, separating from the substrate each of the epitaxial dice that are being transferred, and selectively bonding to the carrier wafer each of the epitaxial dice that are being transferred. The transferred first and second epitaxial dice are processed on the carrier wafer to form a plurality of light emitting devices capable of emitting at least a first wavelength and a second wavelength.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: August 18, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, Eric Goutain, James W. Raring, Paul Rudy, Vlad Novotny