Abstract: A system for stimulation/defibrillation of the left ventricle endocardially or from a vein in the coronary system including: a lead body (10) having a lumen, a distal end (12) with an anchor (14) connectable to a wall of a heart chamber or of a vein of the coronary system, and a proximal side with a connector (22) having a first terminal (26). The lumen of the lead houses a microcable (28) with an active free part (30) that emerges from the distal end. An insert (38) formed on the lead body includes a first electrical connection to the first terminal (26) of the connector, and a coupler selectively movable between (i) a released position wherein the microcable is free to slide in lumen of the lead body, and (ii) a closed position, wherein the microcable is both mechanically immobilized in the lead body and electrically connected to first electrical connection.
Abstract: A pacing lead for a left cavity of the heart, implanted in the coronary system. This lead (24) includes a lead body with a hollow sheath (26, 28) of deformable material, having a central lumen open at both ends, and at least one telescopic microcable (42) of conductive material. The microcable slides along the length of the lead body and extends beyond the distal end (32) thereof. The party emerging beyond the distal end is an active free part (34) comprising a plurality of distinct bare areas (36, 38, 50, 50?, 50?), intended to come into contact (40) with the wall of a target vein (22) of the coronary system (14-22), so as to form a network of stimulation electrodes electrically connected together in parallel. The microcable further comprises, proximally, a connector to a generator of active implantable medical device such as a pacemaker or a resynchronizer.
Abstract: An autonomous active medical implantable device, with a power supply and a wake-up circuit that responds to receipt of specific pulses transmitted through the interstitial tissues of the body transmitter device (40) generates trains of modulated pulses applied to electrodes (22, 24), and a receiver (50) processes (e.g., filter, amplify and demodulate) pulses collected on electrodes (22?, 24?). The receiver circuits (50) are selectively activated from a dormant (sleep) state in which they are not powered by a power source (34), to an operational (active) state in which they are powered and able to process (e.g., filter, amplify and demodulate) the collected pulses specific wake-up pulse train, configured in a predetermined characteristic pulse pattern triggers passive wake-up circuits (66) in the receiver (50) to switch the receiver circuits from the sleep state to the operational state.
Abstract: A closed loop Deep Brain Stimulation (DBS) system constituted of: a physiological sensor; a multi-electrode DBS lead; an adaptive control system in communication with the physiological sensor; and an implantable pulse generator (IPG) responsive to the adaptive control system, the adaptive control system comprising a learning module operable to learn to find the optimal stimulation parameters, classify and associate patient conditions responsive to the physiological sensor with optimal stimulation parameters in a plurality of patient conditions. The adaptive DBS device control system learns to deliver the optimal stimulation parameters based on Watkins and Dayan Q learning recursive formula, the closed loop adaptive DBS control system thus finds the optimal stimulation parameters online.
Abstract: A cardiac pacemaker control system constituted of: a means for receiving input from a hemodynamic sensor; an adaptive control system in communication with the means for receiving input from the hemodynamic sensor; and an interface arranged to provide cardiac stimulation responsive to the adaptive control system; the adaptive control system comprising a learning module operative to converge to patient specific cardiac pacing stimulation timing using a machine learning scheme in cooperation with a probabilistic replacement scheme, the probabilistic replacement scheme arranged to replace inputs from the hemodynamic sensor with online calculated values.
Abstract: A development system for a cardiac pacemaker control system, the development system comprising: a cardiac pacemaker prototype including an adaptive control system; and a heart simulator in communication with the cardiac pacemaker prototype comprising: a means for receiving pacing stimulations output from the cardiac pacemaker prototype; and a hemodynamic sensor model responsive to the received pacing stimulations, the hemodynamic sensor model being operable to output a signal simulating a hemodynamic sensor in a plurality of heart states, the hemodynamic sensor model being further operative to output the signal simulating the hemodynamic sensor in the plurality of heart states in a plurality of heart conditions.