Patents Assigned to Source Photonics (Chengdu) Co., Ltd.
-
Patent number: 8939658Abstract: A small form-factor pluggable (SFP) optical transceiver includes a casing configured to accommodate optical and electrical devices. During normal operation, the casing is connected to a switchboard via a connector in the switchboard, and the optical devices are outside the switchboard, thereby exposing optical devices sensitive to high temperature to the outside air, reducing the operational temperature of the optical device portion relative to the heated portion inside the switchboard. Thus, the present SFP optical transceiver advantageously improves operational performance and extends the life of the device. Also, the present SFP optical transceiver having the optical device portion outside the switchboard advantageously improves the cooling performance for the optical device portion.Type: GrantFiled: January 29, 2013Date of Patent: January 27, 2015Assignee: Source Photonics, Inc.Inventors: Mark Heimbuch, Wayne Wainwright
-
Patent number: 8942556Abstract: An optical transceiver having an integrated optical time domain reflectometer monitoring unit and methods for using the same are disclosed. The disclosure relates to an optical transceiver comprising an optical device comprising a wavelength division multiplexing system (WDM), a data signal driver, a data signal limiting amplifier, and an optical time domain reflectometer (OTDR) data processing module. Furthermore, the optical transceiver is particularly advantageous in an optical line terminal (OLT) and/or a passive optical network (PON). The integrated OTDR data processing module can protect the optical transceiver, ensure successful monitoring data, simplify network wiring and decrease system and network costs by decreasing the number of OTDR modules and WDM units.Type: GrantFiled: December 2, 2011Date of Patent: January 27, 2015Assignee: Source Photonics, Inc.Inventors: Fuqiang Zhao, Yi Yang, Yong Lu
-
Patent number: 8934779Abstract: Methods, architectures, circuits, and/or systems for monitoring operating parameters and/or generating status indications associated with electronic device operation are disclosed. The method can include (i) monitoring a first operating parameter related to operation of the electronic device to determine a first parameter value, (ii) calculating a difference between the first parameter value and a predetermined value for the first operating parameter, (iii) monitoring a second operating parameter on which thresholds for operational warnings and/or alarms are based to determine a second parameter value, (iv) updating or changing the thresholds based on a predetermined change or event in the second parameter value, (v) comparing the difference to the updated or changed thresholds, and (vi) generating a corresponding one of the operational warnings and/or alarms when the difference crosses at least one of the thresholds in a predetermined direction.Type: GrantFiled: February 10, 2012Date of Patent: January 13, 2015Assignee: Source Photonics, Inc.Inventors: Todd Rope, Mark Heimbuch
-
Patent number: 8931966Abstract: An optical triplexer and/or optical line terminal (OLT) compatible with 1.25 and 10 Gb/s passive optical networks is disclosed. The triplexer/OLT includes an optical fiber, first and second laser diodes, a photodiode, and first and second lenses. A hemispherical lens may be at an end face of the photodiode or receiver subassembly housing. A first optical splitter is mounted between the first and second lenses, and a second optical splitter is mounted between the optical fiber and the second laser diode. The first lens and first laser diode, and the second lens and second laser diode share respective common linear optical axes. The present triplexer/OLT advantageously accords with an interface standard IEEE802.3av-2009 PRX30. In addition, the present triplexer can advantageously implement analog receiving and digital transceiving, save optical fiber resources, and provide high efficiency coupling. Thus, requirements for high power output and smaller housing outlines can be served.Type: GrantFiled: December 30, 2011Date of Patent: January 13, 2015Assignee: Source Photonics, Inc.Inventors: Chien-Hsiung Chiu, Hung-Yuan Chen, Chih-Lung Nien, Che-Jen Chang, Shih-Pin Ko, Pei-Keng Fu, Tsai-Wei Chen
-
Patent number: 8929746Abstract: The present disclosure relates to a differential drive circuit. The differential drive circuit generally includes a differential driver, a first transmission line coupled to a first output node of the differential driver, and a second transmission line coupled to a second output node of the differential driver. A laser diode is coupled to the first and second transmission lines. The first and second transmission lines have different delays, lengths, or impedances. In some embodiments, the delay between the first transmission line and the second transmission line is 0.2-0.4 times a rise time or fall time of a signal on either transmission line.Type: GrantFiled: December 12, 2011Date of Patent: January 6, 2015Assignee: Source Photonics, Inc.Inventor: Mohammad Azadeh
-
Patent number: 8929748Abstract: The disclosure relates to a tunable 50 GHz and 100 GHz channel spacing DWDM transceiver, and methods of making and using the same. The transceiver comprises an electro-absorption modulation laser (EML), a system board configured to compare a preset wavelength with an actual emission wavelength of the EML, a microcontroller and one or more associated registers configured to communicate with the system board, a temperature controlling circuit configured to stabilize the actual emission wavelength of the EML; and a wavelength meter connected to the output of the EML and having an output connected to the system board. The system board may be configured to provide a feedback loop from the EML to the microcontroller. The transceiver, suitable for 50 GHz channel spacing standards, can be made from existing standard transceivers and can switch between 50 GHz and 100 GHz channel spacing modes.Type: GrantFiled: March 17, 2011Date of Patent: January 6, 2015Assignee: Source PhotonicsInventors: Zhaoyang Hu, Qing Xiao, Meiling Lu, Yan Chen, Thomas Liljeberg
-
Patent number: 8901474Abstract: An optical transceiver and/or optical network, and methods of monitoring optical transceivers, may be useful for increasing the dynamic range and/or determining the received signal strength and/or link budget of the optical transceiver and/or a different optical transceiver in the optical network. The circuitry generally comprises a photodiode configured to generate a first current responsive to an optical signal, a current mirror configured to produce a second current equal or proportional to the first current, and a nonlinear element configured to produce a first voltage from the first current.Type: GrantFiled: June 19, 2012Date of Patent: December 2, 2014Assignee: Source Photonics, Inc.Inventor: Mohammad Azadeh
-
Patent number: 8903254Abstract: The present disclosure relates to an optical transceiver for use in optical fiber communications and/or telecommunications systems and, more specifically, a low power consumption, long range pluggable transceiver. The transceiver generally comprises a photodiode with a transimpedance amplifier (PIN-TIA); an electro-absorption modulated laser (EML); an optical detector; and a directly modulated laser (DML) driving module connected between the PIN-TIA and EML laser configured to drive the EML laser. A low power-consumption DML driving module is utilized to drive the EML laser, so as to further reduce power consumption. An impedance matching circuit can be applied to modulate an electro-absorption (EA) modulator of the EML laser with maximum efficiency.Type: GrantFiled: May 24, 2011Date of Patent: December 2, 2014Assignee: Source Photonics, Inc.Inventors: Zhaoyang Hu, Lingqiong Zeng, Thomas Liljeberg
-
Patent number: 8891686Abstract: Methods for detecting and/or indicating the presence of valid data and threshold setting and data detection circuitry are disclosed. The threshold setting and data detection circuitry and related methods may be useful for fast and accurate reception of optical signals. The detection circuit generally comprises (i) a first circuit configured to regulate or control a DC offset of a differential input signal, and (ii) a second circuit coupled to the first circuit, the second circuit configured to indicate the presence of a data signal at the differential input signal when a voltage difference between true and complementary nodes of the differential input signal is above a predetermined threshold.Type: GrantFiled: October 26, 2011Date of Patent: November 18, 2014Assignee: Source Photonics, Inc.Inventors: Mohammad Azadeh, Near Margalit
-
Patent number: 8886033Abstract: An optical transceiver and methods for using the same are disclosed. The optical transceiver and methods may be useful for providing more accurate information regarding trends in operation of the optical transceiver, predicting an impending failure of the optical transceiver, and providing details of the optical transceiver prior to failure. The optical transceiver generally includes (1) at least one of (i) a receiver configured to receive optical information and (ii) a transmitter configured to transmit optical information, (2) circuitry configured to sample data for one or more operational parameters of the receiver and/or transmitter, (3) logic configured to perform one or more statistical calculations on the sampled data to generate statistical information, and (iv) one or more memories configured to store the sampled data and the statistical information.Type: GrantFiled: March 22, 2012Date of Patent: November 11, 2014Assignee: Source Photonics, Inc.Inventor: Mohammad Azadeh
-
Patent number: 8879909Abstract: A circuit, optical transceiver and/or methods for using the same may be useful for determining average power, extinction ratio, and/or modulation amplitude when monitoring an optical transceiver and/or optical network. The circuit generally comprises a photodiode configured to generate a first current responsive to an optical signal, a current mirror coupled to a first terminal of the photodiode, and a detector coupled to a second terminal of the photodiode. The current mirror is configured to produce a second current equal to or proportional to the first current, and the detector is configured to determine a power or amplitude of the optical signal. Further, the present scheme may communicate information using a low speed signal superimposed on or combined with the relatively high speed optical signal.Type: GrantFiled: April 25, 2012Date of Patent: November 4, 2014Assignee: Source Photonics, Inc.Inventors: Mark Heimbuch, Mohammad Azadeh
-
Patent number: 8860799Abstract: An alignment system includes a stage configured to retain an object, an image-capturing device configured to capture the image of the field of view of the microscope, and a processing module configured to generate a virtual mask and superimpose the virtual mask with the image of the object. In one embodiment of the present invention, a method for operating a virtual mask system includes the steps of generating a virtual mask, placing a first object on a stage, capturing at least one image of the first object, and superimposing the virtual mask with the image of the first object by adjusting a position or an inclined angle of the stage or adjusting a capturing position of an image-capturing device by considering at least the virtual mask and the image of the first object.Type: GrantFiled: January 19, 2011Date of Patent: October 14, 2014Assignee: Source Photonics, Inc.Inventors: Yung Cheng Chang, E Min Chou, Yu Heng Jan
-
Patent number: 8842993Abstract: Methods, algorithms, architectures, circuits, and/or systems for determining the status of parameters associated with optical transceiver operation are disclosed. The optical transceiver can include an optical receiver to receive optical data; an optical transmitter to transmit optical data; one or more memories to store data (and, optionally, thresholds) for each of a plurality of parameters that are related to operation of at least one of the optical receiver and the optical transmitter; a microprocessor that compares the parametric data against the threshold(s) to calculate one or more flags to indicate whether a corresponding parameter has exceeded the first or second threshold; and an interface that receives a flag request from a host, and provides the one or more flags in response to the request. In the present disclosure, the microprocessor may calculate the one or more flags only in response to the flag request from the host.Type: GrantFiled: March 29, 2011Date of Patent: September 23, 2014Assignee: Source Photonics, Inc.Inventor: Todd Rope
-
Patent number: 8798475Abstract: Methods, algorithms, architectures, circuits, and/or systems for dynamically allocating memory for storing parametric data in optical transceivers are disclosed. The optical transceiver can include an optical receiver configured to receive optical data; an optical transmitter configured to transmit optical data; a microprocessor configured to access data for each of a plurality of parameters that are related to operation of at least one of the optical receiver and the optical transmitter; one or more memories configured to store the data at a plurality of locations that are dynamically allocated by the microprocessor; and an interface configured to receive a request for data for one or more of the parameters from a host and provide the data in response to the request. In the present disclosure, the host is unaware of the locations at which the parametric data are stored.Type: GrantFiled: March 23, 2011Date of Patent: August 5, 2014Assignee: Source Photonics, Inc.Inventor: Todd Rope
-
Patent number: 8792785Abstract: A circuit for monitoring an optical receiver or transceiver, architectures, circuits, and systems including the same, and a method for monitoring received optical power are disclosed. The receiver monitoring circuit comprises an avalanche photodiode (APD), a microprocessor, and first and second transresistance amplifiers. The microprocessor is configured to supply bias voltage to the APD. Photocurrent produced by the APD is supplied to the first and second transresistance amplifiers, and then the microprocessor captures optical power from the voltage signal of the first and second transresistance amplifiers.Type: GrantFiled: May 23, 2012Date of Patent: July 29, 2014Assignee: Source Photonics, Inc.Inventors: Xu Jiang, Xin Shuai, Bing Ju, Yi Yang
-
Patent number: 8670473Abstract: The present disclosure relates to an optical power monitoring circuit including an automatic power control (APC) loop and a microcontroller unit (MCU), and a method for monitoring the same. The APC loop comprises a laser diode (LD) and a feedback loop to maintain a laser optical power. The MCU is configured to (i) monitor a bias current using a current sense circuit, (ii) monitor a rate of change of the bias current with time, and (iii) adjust a target power of the APC loop. By monitoring the bias current and the rate of change, and comparing them against thresholds, the target power can be adjusted by the MCU, to prevent roll-over in the laser diode, damage to the laser, and/or a hard failure in the data links that use the laser.Type: GrantFiled: December 30, 2011Date of Patent: March 11, 2014Assignee: Source Photonics, Inc.Inventors: Mohammad Azadeh, Todd Rope, Mark Heimbuch
-
Patent number: 8666255Abstract: An optical and/or optoelectrical transceiver and system are disclosed that enable parallel transmission of data and management signals via an optical fiber without affecting data signal transmissions transmitted on the optical fiber. Furthermore, the present transceiver and system provide a fault diagnosis function for an optical fiber link. The transceiver and system generally comprise an interface, an intersecting transmission management unit, a driver, a management signal driving unit, an optical transmitter, an optical receiver, an amplifier, a management signal recovery unit, a management unit, and optionally, a power supply unit.Type: GrantFiled: August 15, 2011Date of Patent: March 4, 2014Assignee: Source Photonics, Inc.Inventors: Yuanjun Huang, Jianhua Zhou, Yaxi Xiong, Shengzhong Zhang
-
Patent number: 8606111Abstract: The disclosure relates to a fast, stable method of output wavelength control in a DWDM optical device, and a circuit configured to perform the method. The method and circuit can control timing and overshoot during conditions of rapid operational changes, such as during power-on or restart of the device. The method and circuit includes optimized APC, TEC and electro-absorption (EA) modulator control hardware and algorithms, to effectively control transient processes. Software and circuitry based on the method(s) are achieved in part by optimizing APC, EA and TEC control algorithms. In combination with hardware/circuit optimization, one can achieve fast turn-on of an optical output signal at a stable wavelength. The method and circuit provides a stable power-up process in which a change of wavelength is small enough to meet DWDM specification requirements, to ensure the elimination and avoidance of crosstalk in adjacent channels in dense wave (sub)systems.Type: GrantFiled: February 3, 2011Date of Patent: December 10, 2013Assignee: Source Photonics, Inc.Inventors: Zhaoyang Hu, Hucheng Li, Anbin Wang, Meiling Lu
-
Patent number: 8486214Abstract: Methods and apparatuses for adhering optoelectronic components in optical, electronic or optoelectronic devices are disclosed. A UV-active adhesive is applied to an alignment sensitive component of the device. A first, relatively low dose of UV radiation sufficient to solidify an outer layer of the adhesive is applied to the adhesive. A second, relatively high dose of UV radiation sufficient to solidify the remaining thickness of the adhesive is then applied. The methods and apparatuses of the present invention advantageously reduce or eliminate changes in the position of a component during the adhesive curing process. The present method and apparatus allow for shorter total time for solidifying the adhesive, provide stable positioning during the adhesive solidification process, and enable increased manufacturing output and decreased waste.Type: GrantFiled: September 27, 2011Date of Patent: July 16, 2013Assignee: Source Photonics, Inc.Inventor: Alexin Lai
-
Patent number: RE44107Abstract: An optical transceiver module includes an optical-to-electrical converter configured to convert a first optical signal to a first electric signal, a first amplifier configured to amplify the first electric signal, a bandwidth controller coupled to the first amplifier, configured to control the frequency response characteristics of the amplification of the first amplifier to produce a first amplified electric signal, a driver circuit configured to receive a second electric signal and to produce a second amplified electric signal in response to the second electric signal and an optical feedback signal, an electrical-to-optical converter coupled to the micro-controller and configured to convert the second amplified electrical signal to a second optical signal, and a photo diode configured to detect the second optical signal and to produce the optical feedback signal to be received by the driver circuit.Type: GrantFiled: December 6, 2010Date of Patent: March 26, 2013Assignee: Source Photonics, Inc.Inventors: Rangchen Yu, Yuanjun Huang, Mingshou He, Bin Wei, Jiang Tian