Patents Assigned to Source Photonics, Inc.
  • Patent number: 11394468
    Abstract: Embodiments of the disclosure pertain to a system for transferring an optical signal from one photonics chip or integrated circuit (PIC) to another. The system includes a first PIC having (i) an optical emitter or optical transmission mechanism and (ii) a focusing mirror thereon, and a second PIC having an optical receiver and a reflecting mirror thereon. The reflecting mirror is configured to reflect light transmitted by the optical emitter or optical transmission mechanism back to the first PIC. The focusing mirror is configured to (i) further reflect the light reflected by the reflecting mirror and (ii) focus the further reflected light on the optical receiver. Methods of using and manufacturing the system are also disclosed.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: July 19, 2022
    Assignee: Source Photonics Inc.
    Inventors: Qiugui Zhou, Mark Heimbuch, Chao Tian
  • Patent number: 11303358
    Abstract: Embodiments pertain to an optical transmitter, including a thermally unregulated light emitting device and a sloped or graded passband filter. The light emitting device is configured to receive a bias current and output an optical signal within a wavelength band. The sloped or graded passband filter is configured to attenuate an output power of the optical signal in the wavelength band. The light emitting device has a maximum bias current limit, a maximum operating temperature limit, and maximum and minimum output power limits, and the sloped or graded passband filter has an insertion loss in the wavelength band that decreases as the light emitting device temperature increases and/or the optical signal wavelength increases within the wavelength band. The attenuated optical signal is within the maximum and minimum output power limits when the bias current is at or below the maximum bias current limit and the light emitting device outputs the optical signal at or below the maximum operating temperature limit.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: April 12, 2022
    Assignee: Source Photonics, Inc.
    Inventors: Jian Yang, Chao Tian, Shengzhong Zhang, Jingmao Chi
  • Patent number: 11269201
    Abstract: An optical phase shifter and a method of making the same are disclosed. The phase shifter includes a substrate, a p-doped electrode and an n-doped electrode on the substrate, a first doped semiconductor layer on the p-doped electrode or the n-doped electrode and in electrical contact with the other electrode, a second doped semiconductor layer on the first doped semiconductor layer, a first vertical region electrically connecting the second doped semiconductor layer with the one electrode, and a cladding layer on or over the second semiconductor layer, the first vertical region, and at least a first sidewall of each of the first and second semiconductor layers. The p-doped electrode and the n-doped electrode form a p-n junction at an interface therebetween. The first and second doped semiconductor layers have the same doping type as the other electrode and the one electrode, respectively.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 8, 2022
    Assignee: Source Photonics, Inc.
    Inventors: Qiugui Zhou, Mark Heimbuch
  • Patent number: 11044018
    Abstract: Embodiments of the disclosure pertain to an optical modulator including an m*n optical coupler, first and second waveguides coupled or connected to the m*n optical coupler, a first phase shifter coupled to the first waveguide, and first and second loop mirrors at respective ends of the first and second waveguides opposite from the m*n optical coupler. The m*n optical coupler is configured to combine substantially similar or identical continuous light beams (at least one of which may be phase-shifted) returned through the first and second waveguides by the first and second loop mirrors to form a modulated optical signal. A compound optical modulator, a modulated or modulatable laser, and methods of using and manufacturing the optical modulators, are also disclosed.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: June 22, 2021
    Assignee: Source Photonics, Inc.
    Inventors: Qiugui Zhou, Mark Heimbuch
  • Publication number: 20190113698
    Abstract: Embodiments of the disclosure pertain to an optical or optoelectronic transceiver comprising an optical or optoelectronic receiver, an optical or optoelectronic transmitter, a plurality of electrical devices, a housing, and a heat sink having a non-planar surface. The optical or optoelectronic receiver includes a receiver optical subassembly (ROSA). The optical or optoelectronic transmitter includes a transmitter optical subassembly (TOSA). The electrical devices are configured to provide or control one or more functions of the optical or optoelectronic receiver and the optical or optoelectronic transmitter. The housing is over and/or enclosing the optical or optoelectronic receiver and the optical or optoelectronic transmitter. The housing includes a first section and a second section, and is configured to (a) be removably insertable into a cage or socket of a host device and (b) position the first section of the housing outside the cage or socket when the housing is inserted in the cage or socket.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Applicant: Source Photonics, Inc.
    Inventors: Yu HUANG, Ping CUI, Chao TIAN, Jianhua CHEN, Shengzhong ZHANG, Wayne WAINWRIGHT
  • Patent number: 9829638
    Abstract: An optical multiplexer and methods of making and calibrating the same are disclosed. A method of aligning components in a multichannel optical/optoelectronic transmitter includes passively fixing a plurality of light emitters in place on a substrate; adjusting positions of a first lens passing light from a first light emitter and an optical signal transmission medium receiving the light from the first light emitter until a far field spot of the light from the first light emitter is at or near an end of the transmission medium; fixing one or more optical subassemblies on the substrate; and adjusting positions of the optical subassembly(ies) to align light from the remaining light emitters with the far field spot. Some embodiments include multiple optical subassemblies, each including a lens and a filter. Other embodiments include one optical subassembly including a mirror and a beam combiner.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 28, 2017
    Assignee: Source Photonics, Inc.
    Inventors: Moshe Amit, Mark Heimbuch
  • Patent number: 9720179
    Abstract: An optical multiplexer and methods of making and calibrating the same are disclosed. A method of aligning components in a multichannel optical/optoelectronic transmitter includes passively fixing a plurality of light emitters in place on a substrate; adjusting positions of a first lens passing light from a first light emitter and an optical signal transmission medium receiving the light from the first light emitter until a far field spot of the light from the first light emitter is at or near an end of the transmission medium; fixing one or more optical subassemblies on the substrate; and adjusting positions of the optical subassembly(ies) to align light from the remaining light emitters with the far field spot. Some embodiments include multiple optical subassemblies, each including a lens and a filter. Other embodiments include one optical subassembly including a mirror and a beam combiner.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: August 1, 2017
    Assignee: Source Photonics, Inc.
    Inventors: Moshe Amit, Mark Heimbuch
  • Patent number: 9568680
    Abstract: Methods for manufacturing and using an optical or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful as an optical or optoelectronic transceiver or for the processing of optical signals. The optical or optoelectronic device generally comprises a light-transmitting medium configured to transmit a first light beam; a light-receiving unit configured to receive and process a focused, reflected light beam; a first mirror or beam splitter configured to reflect at least a first portion of the transmitted light beam away from the light-receiving unit; a lens configured to focus the reflected light beam; and a second mirror configured to reflect the focused, reflected light beam towards the light-receiving unit.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 14, 2017
    Assignee: Source Photonics, Inc.
    Inventor: Moshe Amit
  • Publication number: 20170031103
    Abstract: Methods for manufacturing and using an optical or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful as an optical or optoelectronic transceiver or for the processing of optical signals. The optical or optoelectronic device generally comprises a light-transmitting medium configured to transmit a first light beam; a light-receiving unit configured to receive and process a focused, reflected light beam; a first mirror or beam splitter configured to reflect at least a first portion of the transmitted light beam away from the light-receiving unit; a lens configured to focus the reflected light beam; and a second mirror configured to reflect the focused, reflected light beam towards the light-receiving unit.
    Type: Application
    Filed: November 12, 2015
    Publication date: February 2, 2017
    Applicant: SOURCE PHOTONICS, INC.
    Inventor: Moshe AMIT
  • Patent number: 9391718
    Abstract: Methods, architectures, circuits, and/or systems for monitoring operating parameters and/or generating status indications associated with electronic device operation are disclosed. The method can include (i) monitoring a first operating parameter related to operation of the electronic device to determine a first parameter value, (ii) calculating a difference between the first parameter value and a predetermined value for the first operating parameter, (iii) monitoring a second operating parameter on which thresholds for operational warnings and/or alarms are based to determine a second parameter value, (iv) updating or changing the thresholds based on a predetermined change or event in the second parameter value, (v) comparing the difference to the updated or changed thresholds, and (vi) generating a corresponding one of the operational warnings and/or alarms when the difference crosses at least one of the thresholds in a predetermined direction.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: July 12, 2016
    Assignee: Source Photonics, Inc.
    Inventors: Todd Rope, Mark Heimbuch
  • Patent number: 9252873
    Abstract: An optical transceiver, optical network and methods for using the same are disclosed. The optical transceiver and/or optical network and related methods may be useful for independently monitoring the optical transceiver and/or optical network. The optical transceiver generally includes an optical receiver configured to receive optical information; circuitry configured to calculate signal strength values of the received optical information from a plurality of remote optical transmitters; logic configured to process the signal strength values for each of the plurality of remote optical transmitters; and one or more memories configured to store the signal strength values. Optionally, the optical transceiver may notify a system or host when the transceiver, network or component thereof is operating outside a predetermined threshold.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: February 2, 2016
    Assignee: Source Photonics, Inc.
    Inventor: Mark Heimbuch
  • Patent number: 9251689
    Abstract: Methods, architectures, circuits, and/or systems for tracking variations in the operating parameters of an optical or optoelectronic device are disclosed, as well as use of such variation data to monitor or control device functions and/or generate warnings and/or status flags. A method of tracking a variation in one or more operating parameters in an optical or optoelectronic device may include (i) monitoring one or more operating parameters of the device over time to determine values for each of the operating parameters, (ii) calculating the variation in each of the operating parameters as a function of time, (iii) comparing the variation to one or more predetermined thresholds, each threshold corresponding to an operational warning or alarm, and (iv) generating the operational warning or alarm when the variation exceeds the corresponding threshold.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 2, 2016
    Assignee: Source Photonics, Inc.
    Inventors: Yaxi Xiong, Todd Rope, Haifeng Zeng
  • Patent number: 9229167
    Abstract: A WDM multiplexing/demultiplexing system includes a de-multiplexer configured to separate and guide light beams from an incident ray having a plurality of wavelengths to corresponding lenses on an optical device, a multiplexer configured to guide light beams from optical transmitters having various wavelengths through the corresponding lenses on the optical device and combine the light beams, a lens array including the corresponding lenses to receive and/or transmit the light beams from or to the de-multiplexer and multiplexer, and a light beam collimator configured to function with the multiplexer and de-multiplexer. The light beams received or transmitted by the light beam collimator and the light beams transmitted or received from or to the multiplexer and de-multiplexer are collinear. The light beam collimator and multiplexer/de-multiplexer can be easily positioned to predetermined or designed positions, thereby providing light beams output through the lenses in a plastic optical device.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: January 5, 2016
    Assignee: Source Photonics, Inc.
    Inventors: Yung-Cheng Chang, Ken Kuo, Emin Chou
  • Patent number: 9213156
    Abstract: Methods for manufacturing and using an optical or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful as an optical or optoelectronic transceiver or for the processing of optical signals. The optical or optoelectronic device generally comprises a light-transmitting medium configured to transmit a first light beam; a light-receiving unit configured to receive and process a focused, reflected light beam; a first mirror or beam splitter configured to reflect at least a first portion of the transmitted light beam away from the light-receiving unit; a lens configured to focus the reflected light beam; and a second mirror configured to reflect the focused, reflected light beam towards the light-receiving unit.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: December 15, 2015
    Assignee: Source Photonics, Inc.
    Inventor: Moshe Amit
  • Patent number: 9201103
    Abstract: Methods, circuits, architectures, apparatuses, and algorithms for determining a DC level in an AC or AC-coupled signal. The method generally includes disabling the AC or AC-coupled signal; sampling the disabled AC or AC-coupled signal to obtain sampled DC values of the AC or AC-coupled signal; and calculating the DC level using the sampled DC values of the AC or AC-coupled signal. The present transmitter generally includes an electro-absorption modulated laser (EML); a photodetector; a signal source configured to provide an AC or AC-coupled signal to the EML; and a microcontroller or microprocessor configured to (i) control the signal source, (ii) receive information from the photodetector, and (iii) deactivate the signal source for a predetermined length of time. The circuits, architectures, and apparatuses generally include those that embody one or more of the inventive concepts disclosed herein.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 1, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Chris LaBounty, Todd Rope, Tomas J. Ciplickas, Near Margalit
  • Patent number: 9195015
    Abstract: A bi-directional fiber optic transceiver includes a laser diode, a photodiode, first and second lenses, all of which share a common linear optical axis, and a housing. The first lens may have transmission increasing film thereon. The second lens may have a reflection increasing film thereon. An optical splitter may be between the first and second lenses. The first and/or second lenses may be spherical, hemispherical or aspheric. The transceiver size is reduced so that a circuit board can accommodate more components or be smaller in size. Utilizing hemispherical lenses can greatly increase the coupling ratio of the optical links between the photodiode, fiber and laser diode. Utilizing aspheric lenses with high coupling can serve high power output requirements. Use of spherical lenses (which extend the focal length) with aspheric lenses enables LD TO assemblies in individual housings to serve in various products.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: November 24, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Chien-Hsiung Chiu, Shih-Pin Ko, Hung-Yuan Chen
  • Patent number: 9164247
    Abstract: Methods and apparatuses for reducing the sensitivity of an optical signal to polarization. The method generally includes (i) reflecting the optical signal from a first mirror at a first angle relative to the optical signal to a second mirror at a second angle, and (ii) further reflecting the reflected optical signal from the second mirror to a receiver. The apparatus generally comprises (i) a first mirror at a first angle relative to an incident optical signal and configured to reflect the incident optical signal, (ii) a second mirror at a second angle configured to further reflect the reflected optical signal to a first receiver, and (iii) a lens configured to focus and/or collimate the optical signal or the reflected optical signal. The first angle is configured to reduce polarization of the reflected optical signal, thereby maximizing the intensity or power of the optical signal.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 20, 2015
    Assignee: Source Photonics, Inc.
    Inventor: Moshe Amit
  • Patent number: 9059834
    Abstract: The invention relates to a method and algorithm for stabilizing the output state of an optical transceiver. The method includes comparing a signal quality monitor (SQM) register value with a predetermined threshold. If the SQM register value is less than or equal to the predetermined threshold, a microcontroller unit (MCU) reads and determines the rx_lol state bit value of a clock and data recovery (CDR) chip. If the rx_lol state bit value reaches a low logic level value at least 3 times, the MCU converts the state bit values of rx_lol and mod_nr into low logic level values, or else, convert the state bit values of rx_lol and mod_nr into high logic level values. If the SQM register value is greater than the predetermined threshold then the state bit values of rx_lol and mod_nr will be left unchanged. When there is no data input to the CDR chip, the method of the present invention will maintain rx_lol and mod_nr at high or low logic level values to stabilize the output state of the optical transceiver.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: June 16, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Xiaojun Zhou, Meiling Lu, Xiaoyi Zheng, Jifeng Wan
  • Patent number: 9028155
    Abstract: An optical module housing that may be easily seated, locked in and removed from a socket, thereby reducing or eliminating potential damage to the module and socket, and methods for making and using the housing are disclosed. The module housing generally includes a chassis, one or more pivots attached to the chassis, a latch configured to secure the housing in a corresponding slot when in a locked position, a slider configured to be in contact with and/or connected to the latch and to move the latch relative to the chassis, the latch and/or the slider being configured to move on and/or around the pivot(s) and a handle configured to be in contact with and/or connected to the slider such that when the handle moves from a first position to a second position, the slider and latch move to the locked and/or an unlocked positions.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: May 12, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Zili Wang, Wayne Wainwright, Mark Heimbuch
  • Patent number: RE48029
    Abstract: A WDM multiplexing/demultiplexing system includes a de-multiplexer configured to separate and guide light beams from an incident ray having a plurality of wavelengths to corresponding lenses on an optical device, a multiplexer configured to guide light beams from optical transmitters having various wavelengths through the corresponding lenses on the optical device and combine the light beams, a lens array including the corresponding lenses to receive and/or transmit the light beams from or to the de-multiplexer and multiplexer, and a light beam collimator configured to function with the multiplexer and de-multiplexer. The light beams received or transmitted by the light beam collimator and the light beams transmitted or received from or to the multiplexer and de-multiplexer are collinear. The light beam collimator and multiplexer/de-multiplexer can be easily positioned to predetermined or designed positions, thereby providing light beams output through the lenses in a plastic optical device.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: June 2, 2020
    Assignee: Source Photonics, Inc.
    Inventors: Yung-Cheng Chang, Emin Chou, Ken Kuo