Patents Assigned to Southwest Windpower
  • Publication number: 20120326452
    Abstract: Control features for a wind turbine that control the turbine over a range of wind speeds and under triggering conditions with reduced noise, cost, and reliability issues associated with other such controls. Control is accomplished via control electronics, which adjust the torque produced by the electrical output generation device (e.g., alternator) within the wind turbine. During normal operation, torque is adjusted for optimum aerodynamic performance and maximum output of power. In winds above rated power, the control circuit regulates torque to lower aerodynamic performance, as necessary to maintain desired power level output. In triggering conditions, such as during simultaneous control circuit failure and loss of some portion of the electrical output generation device in extreme winds, wind turbine control is accomplished by increasing torque (e.g., via a separate controller) from the electrical output generation device via shorting of windings, so as to cause retardation of blade rotation.
    Type: Application
    Filed: July 16, 2012
    Publication date: December 27, 2012
    Applicant: SOUTHWEST WINDPOWER INC.
    Inventor: David Gregory Calley
  • Patent number: 8247914
    Abstract: Control features for a wind turbine that control the turbine over a range of wind speeds and under triggering conditions with reduced noise, cost, and reliability issues associated with other such controls. Control is accomplished via control electronics, which adjust the torque produced by the electrical output generation device (e.g., alternator) within the wind turbine. During normal operation, torque is adjusted for optimum aerodynamic performance and maximum output of power. In winds above rated power, the control circuit regulates torque to lower aerodynamic performance, as necessary to maintain desired power level output. In triggering conditions, such as during simultaneous control circuit failure and loss of some portion of the electrical output generation device in extreme winds, wind turbine control is accomplished by increasing torque (e.g., via a separate controller) from the electrical output generation device via shorting of windings, so as to cause retardation of blade rotation.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: August 21, 2012
    Assignee: Southwest Windpower, Inc.
    Inventor: David Gregory Calley
  • Patent number: 8018081
    Abstract: A variable voltage and frequency output wind turbine. Variations of the wind turbine include use of a slotless alternator to reduce alternator noise, a high power AC output to facilitate transmission of the output over extended distances, AC to DC converters and DC to AC converters, and sensors for systems and devices to receive the wind turbine output and to allow matching of the output to the receiving devices and system. Other features include a removable hatchcover for dissipating heat from components contained in the turbine or attached to the hatchcover, a swept blade design to reduce blade-produced noise, and power storage components for storing and intermittently using energy stored as a result of wind turbine power generation.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: September 13, 2011
    Assignee: Southwest Windpower, Inc.
    Inventor: David Gregory Calley
  • Publication number: 20100166567
    Abstract: A variable voltage and frequency output wind turbine. Variations of the wind turbine include use of a slotless alternator to reduce alternator noise, a high power AC output to facilitate transmission of the output over extended distances, AC to DC converters and DC to AC converters, and sensors for systems and devices to receive the wind turbine output and to allow matching of the output to the receiving devices and system. Other features include a removable hatchcover for dissipating heat from components contained in the turbine or attached to the hatchcover, a swept blade design to reduce blade-produced noise, and power storage components for storing and intermittently using energy stored as a result of wind turbine power generation.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 1, 2010
    Applicant: SOUTHWEST WINDPOWER, INC.
    Inventor: David Gregory CALLEY
  • Publication number: 20100007145
    Abstract: Control features for a wind turbine that control the turbine over a range of wind speeds and under triggering conditions with reduced noise, cost, and reliability issues associated with other such controls. Control is accomplished via control electronics, which adjust the torque produced by the electrical output generation device (e.g., alternator) within the wind turbine. During normal operation, torque is adjusted for optimum aerodynamic performance and maximum output of power. In winds above rated power, the control circuit regulates torque to lower aerodynamic performance, as necessary to maintain desired power level output. In triggering conditions, such as during simultaneous control circuit failure and loss of some portion of the electrical output generation device in extreme winds, wind turbine control is accomplished by increasing torque (e.g., via a separate controller) from the electrical output generation device via shorting of windings, so as to cause retardation of blade rotation.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 14, 2010
    Applicant: Southwest Windpower Inc.
    Inventor: David Gregory CALLEY
  • Patent number: 7573146
    Abstract: Control features for a wind turbine that control the turbine over a range of wind speeds and under triggering conditions with reduced noise, cost, and reliability issues associated with other such controls. Control is accomplished via control electronics, which adjust the torque produced by the electrical output generation device (e.g., alternator) within the wind turbine. During normal operation, torque is adjusted for optimum aerodynamic performance and maximum output of power. In winds above rated power, the control circuit regulates torque to lower aerodynamic performance, as necessary to maintain desired power level output. In triggering conditions, such as during simultaneous control circuit failure and loss of some portion of the electrical output generation device in extreme winds, wind turbine control is accomplished by increasing torque (e.g., via a separate controller) from the electrical output generation device via shorting of windings, so as to cause retardation of blade rotation.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: August 11, 2009
    Assignee: Southwest Windpower, Inc.
    Inventor: David Gregory Calley
  • Publication number: 20090021022
    Abstract: Control features for a wind turbine that control the turbine over a range of wind speeds and under triggering conditions with reduced noise, cost, and reliability issues associated with other such controls. Control is accomplished via control electronics, which adjust the torque produced by the electrical output generation device (e.g., alternator) within the wind turbine. During normal operation, torque is adjusted for optimum aerodynamic performance and maximum output of power. In winds above rated power, the control circuit regulates torque to lower aerodynamic performance, as necessary to maintain desired power level output. In triggering conditions, such as during simultaneous control circuit failure and loss of some portion of the electrical output generation device in extreme winds, wind turbine control is accomplished by increasing torque (e.g., via a separate controller) from the electrical output generation device via shorting of windings, so as to cause retardation of blade rotation.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 22, 2009
    Applicant: Southwest Windpower, Inc.
    Inventor: David Gregory CALLEY
  • Patent number: 7420288
    Abstract: Control features for a wind turbine that control the turbine over a range of wind speeds and under triggering conditions with reduced noise, cost, and reliability issues associated with other such controls. Control is accomplished via control electronics, which adjust the torque produced by the electrical output generation device (e.g., alternator) within the wind turbine. During normal operation, torque is adjusted for optimum aerodynamic performance and maximum output of power. In winds above rated power, the control circuit regulates torque to lower aerodynamic performance, as necessary to maintain desired power level output. In triggering conditions, such as during simultaneous control circuit failure and loss of some portion of the electrical output generation device in extreme winds, wind turbine control is accomplished by increasing torque (e.g., via a separate controller) from the electrical output generation device via shorting of windings, so as to cause retardation of blade rotation.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: September 2, 2008
    Assignee: Southwest Windpower
    Inventor: David Gregory Calley