Abstract: The purpose of the present invention is to provide a learning model, a signal processor, a flying object, and a program that enable appropriate observation of the situation of an observed object or the environment around the observed object. The learning model is learned by using teaching data with a first received signal as input, the first received signal being based on a reflected electromagnetic wave that is an electromagnetic wave emitted to a first target area and then reflected, and with first meta-information as output, the first meta-information corresponding to the first received signal and having a predetermined item, so as to input a second received signal based on a reflected electromagnetic wave that is an electromagnetic wave emitted to a second target area and then reflected, and to output second meta-information corresponding to the second received signal and having a predetermined item.
Abstract: The purpose of the present invention is to provide a learning model, a signal processor, a flying object, and a program that enable appropriate observation of the situation of an observed object or the environment around the observed object. The learning model is learned by using teaching data with a first received signal as input, the first received signal being based on a reflected electromagnetic wave that is an electromagnetic wave emitted to a first target area and then reflected, and with first meta-information as output, the first meta-information corresponding to the first received signal and having a predetermined item, so as to input a second received signal based on a reflected electromagnetic wave that is an electromagnetic wave emitted to a second target area and then reflected, and to output second meta-information corresponding to the second received signal and having a predetermined item.
Abstract: The purpose of the present invention is to provide a learning model, a signal processor, a flying object, and a program that enable appropriate observation of the situation of an observed object or the environment around the observed object. The learning model is learned by using teaching data with a first received signal as input, the first received signal being based on a reflected electromagnetic wave that is an electromagnetic wave emitted to a first target area and then reflected, and with first meta-information as output, the first meta-information corresponding to the first received signal and having a predetermined item, so as to input a second received signal based on a reflected electromagnetic wave that is an electromagnetic wave emitted to a second target area and then reflected, and to output second meta-information corresponding to the second received signal and having a predetermined item.