Abstract: A spatial indexing system receives a sequence of images depicting an environment, such as a floor of a construction site, and performs a spatial indexing process to automatically identify the spatial locations at which each of the images were captured. The spatial indexing system also generates an immersive model of the environment and provides a visualization interface that allows a user to view each of the images at its corresponding location within the model.
Type:
Grant
Filed:
July 27, 2020
Date of Patent:
July 12, 2022
Assignee:
OPEN SPACE LABS, INC.
Inventors:
Michael Ben Fleischman, Philip DeCamp, Jeevan Kalanithi, Thomas Friel Allen
Abstract: A flow body for an aircraft includes a recess in a surface of the flow body, a first structural component with a porous material and may also include a second structural component with a porous material. The recess includes a front recess region and a rear recess region. The first structural component is arranged in, or on, the front recess region and the second structural component may be arranged in, or on, the rear recess region. An aircraft having the flow body, a weapons system having the flow body and a method for manufacturing a flow body for a vehicle are also described.
Type:
Application
Filed:
October 27, 2021
Publication date:
July 7, 2022
Applicant:
Airbus Defence and Space GmbH
Inventors:
Florian Mayer, Alexander Kolb, Simone Mancini
Abstract: The present teachings is generally directed to facilitating satellite and terrestrial internet communications. In some embodiments, configuration information for configuring a communications device may be retrieved. The configuration information may be provided to the communications device, and the communications device may be caused to be configured based on the configuration information. Responsive to receiving a first data signal from a first satellite, the communications device may be configured to generate and output a second data signal based on the first data signal, the first data signal including first data encoded using one or more space-based communication protocols, and the second data including second data encoded using one or more terrestrial-based communication protocols.
Abstract: The present invention concerns a method for performing SAR acquisitions, which comprises performing SAR acquisitions in Spotlight/Stripmap mode of areas/swaths of earth's surface by means of a SAR system carried by an air or space platform along a flight direction, whereby: an azimuth direction is defined by a ground track of the flight direction on the earth's surface, a nadir direction is defined that is orthogonal to the earth's surface, to the flight direction and to the azimuth direction, an across-track direction is defined that lies on the earth's surface and is orthogonal to the azimuth direction and to the nadir direction, and, for each acquired area/swath of the earth's surface, a respective range direction is defined that extends from the synthetic aperture radar system to said acquired area/swath.
Type:
Application
Filed:
April 9, 2020
Publication date:
July 7, 2022
Applicant:
Thales Alenia Space Italia S.p.A. Con Unico Socio
Abstract: A remote system for an autonomous vehicle, includes a receiver, a controller, and a display device. The receiver is configured to receive road information. The controller is programmed to receive input related to the road information and create a supervision zone when the road information impacts road drivability. The display device is disposed at a control center area and configured to display a visual indication on a map of the supervision zone.
Type:
Grant
Filed:
December 22, 2017
Date of Patent:
July 5, 2022
Assignees:
NISSAN NORTH AMERICA, INC., United States of America as Represented by the Admininstrator of the Nationa Aeronautics and Space
Inventors:
Liam Pedersen, Siddharth Thakur, Armelle Guerin, Ali Mortazavi, Atsuhide Kobashi, Mauro Della Penna, Richard Enlow, Andrea Angquist, Richard Salloum, Stephen Wu, Ben Christel, Shane Hogan, John Deniston, Jen Hamon, Sannidhi Jalukar, Maarten Sierhuis, Eric Schafer, David Lees, Dawn Wheeler, Mark Allan
Abstract: A platform with a signal generation unit and a transmitting unit. The signal generation unit is adapted to generate a spreading code sequence. The spreading code sequence has a reference chip with a rising edge and a falling edge. The signal generation unit is adapted to adjust the spreading code sequence to ensure that the rising edge or the falling edge of the reference chip arrives at a Virtual Timing Reference Station, VTRS, on a predetermined time (tref,VTRS). The transmitting unit is adapted to engage with the signal generation unit and adapted to transmit the spreading code sequence. Further, a user device for receiving the transmitted spreading code sequence.
Type:
Grant
Filed:
September 5, 2019
Date of Patent:
July 5, 2022
Assignee:
Airbus Defence and Space GmbH
Inventors:
Francis Soualle, Jean-Jacques Floch, Thomas Bey
Abstract: An integrated communication and ranging system for use on a spacecraft includes: a laser module configured to emit at least one beam, a pointing module configured to direct the at least one beam toward a ground station and toward an object in space, and a detector module configured to detect a scattered portion of the at least one beam. The system further includes a control module configured to operate the pointing module to (i) transmit data to the ground station using the at least one beam and (ii) determine, using the detector module, a distance between the spacecraft and the object using the at least one beam.
Abstract: Deployable reflectors and antennas and spacecraft using such reflectors are disclosed. An example disclosed reflector includes: a hub having a cross-section formed in a circular, elliptical or polygonal shape; a plurality of ribs, each rib having an inner side surface facing an outer peripheral side of the hub when folded, and an outer side surface that is a surface opposite to the inner side surface, the plurality of ribs being folded to be wound around an outer periphery of the hub such that the inner side surface of each rib and the outer side surface of its adjacent rib partially face each other or the outer side surface of each rib and the inner side surface of its adjacent rib partially face each other, each rib being deployed in a parabolic shape; and a sheet installed across each of the plurality of ribs and capable of reflecting radio waves.
Type:
Grant
Filed:
October 30, 2017
Date of Patent:
July 5, 2022
Assignee:
Institute for Q-shu Pioneers of Space, Inc.
Inventors:
Shunsuke Onishi, Tetsuo Yasaka, Kazuo Kuno, Yohei Koga
Abstract: A dicing method for separating a wafer comprising a plurality of solar cells stack along at least one parting line, at least having the steps of: providing the wafer with a top, a bottom, an adhesive layer which is integrally bonded with the top and a cover glass layer which is integrally bonded with the adhesive layer, wherein the wafer includes a plurality of solar cell stacks, each having a germanium substrate layer forming the bottom of the wafer, a germanium sub-cell and at least two III-V sub-cells; creating a separating trench along the parting line by means of laser ablation, which extends from a bottom of the wafer through the wafer and the adhesive layer at least up to a top of the cover glass layer; and dividing the cover glass layer along the separating trench.
Type:
Grant
Filed:
August 31, 2020
Date of Patent:
July 5, 2022
Assignee:
AZUR SPACE Solar Power GmbH
Inventors:
Steffen Sommer, Wolfgang Koestler, Alexander Frey
Abstract: A composite panel includes a first skin, a second skin, a core arranged between the first skin and the second skin, reinforcing pins connected by a first end to the first skin and connected by a second end to the second skin, in which inclined reinforcing pins form an angle of from 25 degrees to 40 degrees with the first skin and/or the second skin.
Type:
Grant
Filed:
December 12, 2018
Date of Patent:
July 5, 2022
Assignee:
Airbus Defence and Space GmbH
Inventors:
Markus J. Weber, Ulf Henning Neumann, Gregor Christian Endres
Abstract: A method for attaching a heat-emitting device and a capillary heat pipe to a panel of a spacecraft wall is disclosed including the steps of: a) positioning a capillary heat pipe on a portion of the panel; attaching female attachment bodies to the panel, the female attachment bodies protruding relative to the capillary heat pipe; c) placing a thermally-conductive and self-curing paste over a portion of the capillary heat pipe or over a heat-emitting device; d) placing a heat-emitting device on the thermally-conductive and self-curing paste and on the female attachment bodies, said heat-emitting device bearing against and being in direct contact with the female attachment bodies, and e) attaching the heat-emitting device and said capillary heat pipe to the panel by attaching male attachment members to the female attachment bodies.
Abstract: A battery and an electrical battery monitoring device are disclosed having a first group of sensing switches connected in series on a first monitoring circuit, the sensing switches, a second group of electrical sensing switches connected in series on a second monitoring circuit, an input unit to provide an input to the first and second monitoring circuits, a monitoring unit to receive an output from the first and second monitoring circuits, wherein the monitoring unit receives at least two outputs from two measuring points of the first monitoring circuit, the two measuring points being separated by at least one sensing switch. The location of a defective battery cell may be early detected and precisely located by the monitoring of the battery cells in rows and columns.
Type:
Grant
Filed:
August 2, 2019
Date of Patent:
July 5, 2022
Assignees:
AIRBUS HELICOPTERS DEUTSCHLAND GmbH, AIRBUS DEFENCE AND SPACE GmbH
Inventors:
Philipp Weinreiter, Kristian Zimmermann
Abstract: A method of increasing the glass transition point of a cured epoxy comprising a bisphenol A diglycidyl ether and a polyetheramine includes the step of including 1,8-diamino-p-menthane as an additional hardener for curing the epoxy. An epoxy formulation includes bisphenol A diglycidyl ether and a hardener including a polyetheramine and 1,8-diamino-p-menthane.
Type:
Grant
Filed:
May 7, 2019
Date of Patent:
July 5, 2022
Assignee:
Space Exploration Technologies Corp.
Inventors:
Wenhong Fan, Ryan Christopher Kennett, Joshua James Conlon
Abstract: A spacecraft radiation shield system (2) is disclosed for improving the protection from ionising radiation from the external environment and providing an improved freedom of orientation to the spacecraft. The spacecraft radiation shield system includes: at least two magnets arranged in a magnetic multipole (6), a magnetometer (14), and an adjustable magnet (10).
Abstract: A basic logic element (1) includes: a calculation unit (11) configured to perform calculation processing; a self-diagnosis unit (12) configured to self-diagnose whether or not there is an abnormality in a result of the calculation output from the basic logic element; a management unit (13) configured to determine whether or not to retain authority to output the result of the calculation based on a result of the diagnosis performed by the self-diagnosis unit (12) and output a result of the determination as an authority signal; and an output control unit (14) configured to control whether or not to output the result of the calculation performed by the calculation unit (11) based on whether or not the authority to output data is retained by the management unit (13).
Abstract: An industrial control system includes an encryption device, a decryption device and a mission-critical communication link connecting the encryption device to the decryption device. The encryption device is configured to send encrypted messages to the decryption device over the mission-critical communication link. The system includes a failure monitor configured to monitor for a failure of the encryption device or the decryption device, and, in the event of failure, to continue the sending of the messages to the decryption device but without encrypting the messages.
Type:
Grant
Filed:
October 27, 2020
Date of Patent:
June 28, 2022
Assignee:
Airbus Defence and Space Limited
Inventors:
Ray James, Keith Travis, Stephen Williams, Kevin Jones
Abstract: The present invention concerns a localization method for locating a target that is coupled with a locator transponder associated with a permanent identification code permanently assigned to said locator transponder; the localization method comprising: upon reception of a user request for locating the target, transmitting, by a paging system or by a radar-based system, a spread spectrum paging signal carrying the permanent identification code and a temporary identification code temporarily assigned to the locator transponder, wherein said temporary identification code is shorter than said permanent identification code; receiving, by the locator transponder, the spread spectrum paging signal and extracting, by said locator transponder, the temporary identification code carried by said spread spectrum paging signal received; transmitting, by the radar-based system, radar signals towards one or more areas of earth's surface or sky, and receiving, by said radar-based system, echo signals from said one or more area
Type:
Grant
Filed:
March 9, 2018
Date of Patent:
June 28, 2022
Assignee:
Thales Alenia Space Italia S.p.A. Con Unico Socio
Inventors:
Domenico Giancristofaro, Giacinto Losquadro, Roberto Venturini, Diego Calabrese
Abstract: A monolithic metamorphic multi-junction solar cell comprising a first III-V subcell and a second III-V subcell and a third III-V subcell and a fourth Ge subcell, wherein the subcells are stacked on top of each other in the indicated order, and the first subcell forms the topmost subcell, and a metamorphic buffer is formed between the third subcell and the fourth subcell and all subcells each have an n-doped emitter layer and a p-doped base layer, and the emitter layer of the second subcell is greater than the base layer.
Type:
Grant
Filed:
July 12, 2021
Date of Patent:
June 28, 2022
Assignee:
AZUR SPACE Solar Power GmbH
Inventors:
Matthias Meusel, Alexander Berg, Philipp Schroth, Susanne Schreier
Abstract: A method for federating at least two communication networks for mobile terminals by establishing a dedicated link between the two networks and then configuring one of the networks to use elements of the other network, in particular the user database and the communication policy manager.
Abstract: A passively damped mechanical system is disclosed, for example for use in aerospace applications where vibration can adversely affect navigational and operational instruments. In one example, the passively damped mechanical system includes an end fitting of a strut used to connect a structural element to a payload. The end fitting may include outer and inner cylindrical hubs, with a space between the outer and inner cylindrical hub at least partially filled with a viscoelastic material. In a further example, the passively damped mechanical system includes legs used to connect a structural element to a bracket configured to support a payload. Each leg may include a hollow interior having a lattice structure to add strength and a viscoelastic material to provide passive damping.
Type:
Application
Filed:
December 17, 2020
Publication date:
June 23, 2022
Applicant:
MAXAR SPACE LLC
Inventors:
Michael Freestone, Brian M. Cayton, John Rappolt, Shane Abraham Seiwerts, Daniel Fluitt, Kevin Ziemann