Patents Assigned to Spark Thermionics, Inc.
  • Patent number: 11935667
    Abstract: A thermionic energy conversion system, preferably including one or more electron collectors, interfacial layers, encapsulation, and/or electron emitters. A method for manufacturing the thermionic energy conversion system. A method of operation for a thermionic energy conversion system, preferably including receiving power, emitting electrons, and receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: March 19, 2024
    Assignee: Spark Thermionics, Inc.
    Inventors: Kyana Van Houten, Lucas Heinrich Hess, Jared William Schwede, Felix Schmitt
  • Patent number: 11791143
    Abstract: A small-gap device system, preferably including two or more electrodes and one or more spacers maintaining a gap between two or more of the electrodes. A spacer for a small-gap device system, preferably including a plurality of legs defining a mesh structure. A method of spacer and/or small-gap device fabrication, preferably including: defining lateral features, depositing spacer material, selectively removing spacer material, separating the spacer from a fabrication substrate, and/or assembling the small-gap device.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: October 17, 2023
    Assignees: Spark Thermionics, Inc., The Trustees of the University of Pennsylvania
    Inventors: Jared William Schwede, Igor Bargatin, Samuel M. Nicaise, Chen Lin, John Provine
  • Patent number: 11788734
    Abstract: A system for combined heat and electric power generation, preferably including a heat reservoir and one or more electric generators, each preferably including a heat source and an energy converter. A method for combined heat and electric power generation, preferably including activating an electric generator, deactivating the electric generator, and/or providing heat from a heat reservoir.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: October 17, 2023
    Assignee: Spark Thermionics, Inc.
    Inventors: Adam G. Lorimer, Jared William Schwede
  • Patent number: 11791142
    Abstract: A small-gap device system, preferably including two or more electrodes and one or more spacers maintaining a gap between two or more of the electrodes. A spacer for a small-gap device system, preferably including a plurality of legs defining a mesh structure. A method of spacer and/or small-gap device fabrication, preferably including: defining lateral features, depositing spacer material, selectively removing spacer material, separating the spacer from a fabrication substrate, and/or assembling the small-gap device.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: October 17, 2023
    Assignees: Spark Thermionics, Inc., The Trustees of the University of Pennsylvania
    Inventors: Matthew Campbell, Mohsen Azadi, Kyana Van Houten, Jared William Schwede, Samuel M. Nicaise, Igor Bargatin
  • Patent number: 11688593
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: June 27, 2023
    Assignee: Spark Thermionics, Inc.
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Patent number: 11552233
    Abstract: A thermionic energy converter, preferably including an anode and a cathode. An anode of a thermionic energy converter, preferably including an n-type semiconductor, one or more supplemental layers, and an electrical contact. A method for work function reduction and/or thermionic energy conversion, preferably including inputting thermal energy to a thermionic energy converter, illuminating an anode of the thermionic energy converter, thereby preferably reducing a work function of the anode, and extracting electrical power from the system.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: January 10, 2023
    Assignee: Spark Thermionics, Inc.
    Inventors: Jared William Schwede, Lucas Heinrich Hess
  • Patent number: 11430644
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: August 30, 2022
    Assignee: Spark Thermionics, Inc.
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Patent number: 11264144
    Abstract: A thermionic energy conversion system, preferably including one or more electron collectors, interfacial layers, encapsulation, and/or electron emitters. A method for manufacturing the thermionic energy conversion system. A method of operation for a thermionic energy conversion system, preferably including receiving power, emitting electrons, and receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: March 1, 2022
    Assignee: Spark Thermionics, Inc.
    Inventors: Kyana Van Houten, Lucas Heinrich Hess, Jared William Schwede, Felix Schmitt
  • Patent number: 11170984
    Abstract: A small-gap device system, preferably including two or more electrodes and one or more spacers maintaining a gap between two or more of the electrodes. A spacer for a small-gap device system, preferably including a plurality of legs defining a mesh structure. A method of spacer and/or small-gap device fabrication, preferably including: defining lateral features, depositing spacer material, selectively removing spacer material, separating the spacer from a fabrication substrate, and/or assembling the small-gap device.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: November 9, 2021
    Assignees: Spark Thermionics, Inc., The Trustees of the University of Pennsylvania
    Inventors: Jared William Schwede, Igor Bargatin, Samuel M. Nicaise, Chen Lin, John Provine
  • Patent number: 11133757
    Abstract: A system for combined heat and electric power generation, preferably including a heat reservoir and one or more electric generators, each preferably including a heat source and an energy converter. A method for combined heat and electric power generation, preferably including activating an electric generator, deactivating the electric generator, and/or providing heat from a heat reservoir.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: September 28, 2021
    Assignee: Spark Thermionics, Inc.
    Inventors: Adam Lorimer, Jared William Schwede
  • Patent number: 10699886
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 30, 2020
    Assignee: Spark Thermionics, Inc.
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer