Patents Assigned to SPECIAL MATERIALS RESEARCH AND TECHNOLOGY INC (SPECMAT)
  • Patent number: 10217893
    Abstract: A method of passivating semiconductor devices using existing tools of junction isolation and phosphosilicate glass (PSG)/borosilicate glass (BSG) etch via room temperature wet chemical growth (RTWCG) processes is provided. Back side processing of the semiconductor device achieves passivation and junction isolation in a single step, while front side processing achieves passivation, PSG/BSG etch, anti-reflection coating and potential induced degradation (PID) mitigation simultaneously. A modified solar cell fabrication method is then provided by integrating the passivation formation method into conventional solar cell manufacturing systems. The resulting solar cells comprise a semiconductor substrate having a front surface and a back surface. The front surface is coated with a SiOx layer less than 50 nm thick, over which a SiNx layer is deposited. On the back surface, another SiOx layer is coated. Experimental data shows high efficiency and mitigated PID of the solar cells.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: February 26, 2019
    Assignee: SPECIAL MATERIALS RESEARCH AND TECHNOLOGY, INC. (SPECMAT)
    Inventors: Gregory C. Knight, Horia M. Faur, Maria Faur
  • Publication number: 20160233374
    Abstract: A method of passivating semiconductor devices using existing tools of junction isolation and phosphosilicate glass (PSG)/borosilicate glass (BSG) etch via room temperature wet chemical growth (RTWCG) processes is provided. Back side processing of the semiconductor device achieves passivation and junction isolation in a single step, while front side processing achieves passivation, PSG/BSG etch, anti-reflection coating and potential induced degradation (PID) mitigation simultaneously. A modified solar cell fabrication method is then provided by integrating the passivation formation method into conventional solar cell manufacturing systems. The resulting solar cells comprise a semiconductor substrate having a front surface and a back surface. The front surface is coated with a SiOx layer less than 50 nm thick, over which a SiNx layer is deposited. On the back surface, another SiOx layer is coated. Experimental data shows high efficiency and mitigated PID of the solar cells.
    Type: Application
    Filed: September 16, 2014
    Publication date: August 11, 2016
    Applicant: SPECIAL MATERIALS RESEARCH AND TECHNOLOGY INC (SPECMAT)
    Inventors: Gregory C. KNIGHT, Horia M. FAUR, Maria FAUR