Abstract: A system for performing exothermic operations or oxygen delivery uses a rod and handle configuration to create a flowpath of oxygen. The rod includes cables having stainless steel fibers that burn using the oxygen within a hollow center area. While burning, the rod cuts through material. A sheath covers the covers to contain the gases and prevent unraveling of the cables. The handle attaches to the rod and provides control of the flow of oxygen to the rod. A manifold fixing in place bottles of oxygen connects to the handle and can be fixed to provide different mixtures from different bottles. The rod is disconnected when needed to fix a mask thereto for delivering breathable oxygen to a patient.
Abstract: A one-piece, machined manifold for connecting air supply cylinders with a first stage regulator and recharge port has at least one bottle port configured to removably receive a bottle of pressurized air, a first stage regulator chamber, a quick disconnect fitting port, an air channel in fluid communication with the at least one bottle port and the first stage regulator chamber, and an outlet channel in fluid communication with the first stage regulator chamber.
Abstract: A high-pressure passthrough apparatus and protective suit having a high-pressure passthrough is provided. A high-pressure passthrough having a penetrator body is connected to a protective suit, wherein a first half of the penetrator body is positioned exterior of the protective suit and a second half of the penetrator body is positioned interior of the suit. A high-pressure passthrough valve is positioned on the second half of the penetrator body, wherein high-pressured air is supplied to an interior space of the protective suit. Releasing the quantity of high-pressure air to the interior of the protective suit with the high-pressure passthrough valve may act to cool the interior of the protective suit.
Abstract: A system for performing exothermic operations or oxygen delivery uses a rod and handle configuration to create a flowpath of oxygen. The rod includes cables having stainless steel fibers that burn using the oxygen within a hollow center area. While burning, the rod cuts through material. A sheath covers the covers to contain the gases and prevent unraveling of the cables. The handle attaches to the rod and provides control of the flow of oxygen to the rod. A manifold fixing in place bottles of oxygen connects to the handle and can be fixed to provide different mixtures from different bottles. The rod is disconnected when needed to fix a mask thereto for delivering breathable oxygen to a patient.
Abstract: A system for performing exothermic operations or oxygen delivery uses a rod and handle configuration to create a flowpath of oxygen. The rod includes cables having stainless steel fibers that burn using the oxygen within a hollow center area. While burning, the rod cuts through material. A sheath covers the covers to contain the gases and prevent unraveling of the cables. The handle attaches to the rod and provides control of the flow of oxygen to the rod. A manifold fixing in place bottles of oxygen connects to the handle and can be fixed to provide different mixtures from different bottles. The rod is disconnected when needed to fix a mask thereto for delivering breathable oxygen to a patient.