Abstract: A real-time, dynamic method for creating a body of cycle-and-cylinder-specific noise-reduction baseline data useable in conjunction with analyzing the engine-knock behavior of a subject internal combustion engine involving operating the engine in an operating mode wherein engine knock may occur, and while doing so, and during each cycle of each cylinder, gathering cycle-and-cylinder-specific, knock-free, engine-operating, baseline noise data which is intended and dedicated for noise-reduction use solely with respect to analyzing any knock data found to exist in the same operating cycle.
Abstract: A system for, and a method of, obtaining, for analysis, from a subject internal combustion engine, real-time engine knock data involving assessing, as a positive indication of engine knock behavior, whether the energy-content value represented in at least one selected, knock-relevant frequency-domain spectral bin which is present in a frequency-domain energy-content spectrum derived from acquired engine operating data of a type expected to contain evidence of engine knock behavior exceeds that of a pre-selected energy threshold value.