Patents Assigned to Spectral Sciences, Inc.
  • Patent number: 11047737
    Abstract: A temporal-spectral multiplexing sensor for simultaneous or near simultaneous spatial-temporal-spectral analysis of an incoming optical radiation field. A spectral encoder produces a time series of spectrally encoded optical images at a high sampling rate. A series of full panchromatic spectrally encoded optical images are collected at a rate similar to the sampling rate. A detector records at least one spatial region of the spectrally encoded optical image. A processor is configured to process two series of spectrally encoded optical images to produce an artifact-free spectral image. The processing includes using the panchromatic images to normalize the spectrally encoded images, and decoding the normalized encoded images to produce high fidelity spectral signatures, free of temporal artifacts due to fluctuations at frequencies slower than the sampling rate for polychromatic images.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: June 29, 2021
    Assignee: Spectral Sciences, Inc.
    Inventors: Robert M. Shroll, Pajo Vujkovic-Cvijin, Jamine Lee, Neil Goldstein, Marsha Fox, Michael Kogan
  • Patent number: 10643309
    Abstract: This disclosure relates to processing a spectral dataset, such as a hyperspectral image or a large collection of individual spectra taken with the same spectrometer, to increase the signal-to-noise ratio. The methods can also be used to process a stack of images that differ by acquisition time rather than wavelength. The methods remove most of the sensor background noise with minimal corruption of image texture, anomalous or rare spectra or waveforms, and spectral or time resolution.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 5, 2020
    Assignee: Spectral Sciences, Inc.
    Inventor: Steven Adler-Golden
  • Patent number: 9804028
    Abstract: A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
    Type: Grant
    Filed: February 7, 2015
    Date of Patent: October 31, 2017
    Assignee: Spectral Sciences, Inc.
    Inventor: Pajo Vukovic-Cvijin
  • Patent number: 9442002
    Abstract: A method and device for remotely detecting structural integrity using reflections or scattering from windows or other portions of a structure. The long geometrical lever arm of a reflection on a building window, when viewed with suitable instruments, produces detectable modulation in the reflected light from minute vibrational changes upon the glass surface, revealing fundamental resonances and structural changes and failure in the building housing the window. By sensing very small changes in intensity and polarization, information may be obtained on fundamental resonances and structural changes, including failure or imminent failure of the structure.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: September 13, 2016
    Assignee: Spectral Sciences, Inc.
    Inventor: Frank Oliver Clark
  • Patent number: 9042414
    Abstract: A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 26, 2015
    Assignee: Spectral Sciences, Inc.
    Inventors: Pajo Vukovic-Cvijin, Neil Goldstein
  • Publication number: 20140211207
    Abstract: A method and device for remotely detecting structural integrity using reflections or scattering from windows or other portions of a structure. The long geometrical lever arm of a reflection on a building window, when viewed with suitable instruments, produces detectable modulation in the reflected light from minute vibrational changes upon the glass surface, revealing fundamental resonances and structural changes and failure in the building housing the window. By sensing very small changes in intensity and polarization, information may be obtained on fundamental resonances and structural changes, including failure or imminent failure of the structure.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 31, 2014
    Applicant: Spectral Sciences, Inc.
    Inventor: Frank Oliver Clark
  • Patent number: 8697449
    Abstract: An optical blood coagulation monitor and method. The monitor has a blood sample holder, a laser with its output light directed through the blood sample, a two-dimensional detector that is able to detect light at the laser light wavelength and that has a detector output, optics for imaging onto the detector laser light that is forward scattered by the blood, and a data analysis system, responsive to the detector output, that is adapted to analyze the detected light to provide information on time-resolved coagulation and clotting properties of the blood.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 15, 2014
    Assignee: Spectral Sciences, Inc.
    Inventors: Brian Gregor, Rama Bansil, Julian D. Spring
  • Patent number: 8371102
    Abstract: A system for controlling the uniformity of combustion over a range of operating conditions in a combustor with a plurality of fuel nozzles. The system includes a number of optical sensors, each sensor comprising an optical probe that collects naturally occurring optical radiation emanating from a segment of the combustor or combustor exhaust, and at least one transducer that receives the radiation collected by the probes, compares the intensity of collected radiation from each sensor in a plurality of spectral pass-bands that are indicative of the fuel/air ratio in the combustor segments, and produces output signals that are indicative of the state of combustion in the combustor segments. A control system receives the output signals from the transducers and in response controls the fuel flow to the fuel nozzles to achieve an output from each of the sensors that has been determined to be indicative of a predetermined state of combustion.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: February 12, 2013
    Assignee: Spectral Sciences, Inc.
    Inventors: Jamine Lee, Neil Goldstein, Jason A. Cline, Fritz Bien, Timothy C. Perkins, Brian F. Gregor
  • Patent number: 8351031
    Abstract: A single-shot spectral imager or imaging system which acquires multiplexed spatial and spectral data in a single snapshot with high optical collection efficiency and with the speed limited only by the readout time of the detector circuitry. The imager uses dispersive optics together with spatial light modulators to encode a mathematical transform onto the acquired spatial-spectral data. A multitude of encoded images is recorded simultaneously on a focal plane array and subsequently decoded to produce a spectral/spatial hypercube.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: January 8, 2013
    Assignee: Spectral Sciences, Inc.
    Inventors: Marsha J. Fox, Pajo Vujkovic-Cvijin, Neil Goldstein
  • Patent number: 8305575
    Abstract: An adaptive spectral sensor, and methods of using the sensor. The sensor uses a programmable band pass transmission filter to produce both contrast signals, which discriminate specific target materials from background materials by comparing spectral signatures in hardware, and scene radiance spectra. The adaptive spectral sensor may measure one or more scene spectra and may form a spectral image. The sensor may automatically adjust to changing spectral, spatial and temporal conditions in the environment being monitored, by changing sensor resolution in those dimensions and by changing the detection band pass. The programmable band pass can be changed on-the-fly in real time to implement a variety of detection techniques in hardware or measure the spatial or spectral signatures of specific materials and scenes.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 6, 2012
    Assignee: Spectral Sciences, Inc.
    Inventors: Neil Goldstein, Jason A. Cline, Pajo Vujkovic-Cvijin, Steven M. Adler-Golden, Marsha J. Fox, Brian Gregor, Jamine Lee
  • Publication number: 20120252127
    Abstract: An optical blood coagulation monitor and method. The monitor has a blood sample holder, a laser with its output light directed through the blood sample, a two-dimensional detector that is able to detect light at the laser light wavelength and that has a detector output, optics for imaging onto the detector laser light that is forward scattered by the blood, and a data analysis system, responsive to the detector output, that is adapted to analyze the detected light to provide information on time-resolved coagulation and clotting properties of the blood.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicant: Spectral Sciences, Inc.
    Inventors: Brian Gregor, Rama Bansil, Julian D. Spring
  • Publication number: 20120206725
    Abstract: A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
    Type: Application
    Filed: June 7, 2011
    Publication date: August 16, 2012
    Applicant: Spectral Sciences, Inc.
    Inventors: Pajo Vukovic-Cvijin, Neil Goldstein
  • Publication number: 20100309467
    Abstract: A single-shot spectral imager or imaging system which acquires multiplexed spatial and spectral data in a single snapshot with high optical collection efficiency and with the speed limited only by the readout time of the detector circuitry. The imager uses dispersive optics together with spatial light modulators to encode a mathematical transform onto the acquired spatial-spectral data. A multitude of encoded images is recorded simultaneously on a focal plane array and subsequently decoded to produce a spectral/spatial hypercube.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Applicant: Spectral Sciences, Inc.
    Inventors: Marsha J. Fox, Pajo Vujkovic-Cvijin, Neil Goldstein
  • Patent number: 7680337
    Abstract: The invention provides a method for identifying one or more materials in a scene by determining a set of spectral vectors, called endmembers, from a data set comprised of spectra from the image data, and matching the set of endmembers to predefined library materials. The image data of the scene is captured with a sensor, and comprises a plurality of spectra. The method applies an iterative mathematical criterion, termed residual minimization, to find the endmembers. The first endmember may be selected based on the largest mean square value or the largest mean magnitude value. Subsequent endmembers are determined by calculating weighting factors, such that the weighting factors are non-negative and the calculated vector differences, or residuals, generate the smallest error metric. The error metric is dependent upon the vector difference between two spectra in the image data set, and may be the mean squared vector difference between two spectra.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: March 16, 2010
    Assignee: Spectral Sciences, Inc.
    Inventors: John Gruninger, Steven Adler-Golden
  • Patent number: 7593835
    Abstract: A radiative transport band model method for prediction and analysis of high spectral resolution radiometric measurements. Atomic and molecular line center absorption is determined from finite spectral bin equivalent widths. A mathematically exact expansion for finite bin equivalent widths provides high accuracy at any desired spectral resolution. The temperature and pressure dependent Voigt line tail spectral absorption contributing to each spectral bin is pre-computed and fit to Padé approximants for rapid and accurate accounting of neighboring-to-distant lines. A specific embodiment has been incorporated into the MODTRAN™ radiation transport model.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: September 22, 2009
    Assignee: Spectral Sciences, Inc.
    Inventors: Gail P. Anderson, Alexander Berk, Prabhat K. Acharya, Larry S. Bernstein, Steven M. Adler-Golden, Jamine Lee, Leonid Muratov
  • Patent number: 7433806
    Abstract: A radiative transport band model algorithm has been developed for prediction and analysis of high spectral resolution radiometric measurements. Atomic and molecular line center absorption is determined from finite spectral bin equivalent widths. A new mathematically exact expansion for finite bin equivalent widths provides high accuracy at any desired spectral resolution. The temperature and pressure dependent Voigt line tail spectral absorption contributing to each spectral bin is pre-computed and fit to Padé approximants for rapid and accurate accounting of neighboring-to-distant lines.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: October 7, 2008
    Assignee: Spectral Sciences, Inc.
    Inventors: Alexander Berk, Prabhat K. Acharya, Lawrence S. Bernstein, Gail P. Anderson, Paul Lewis, James H. Chetwynd, Michael L. Hoke
  • Patent number: 7337065
    Abstract: This invention discloses several improved methods of correcting for atmospheric effects on a remote image of the Earth's surface taken from above, wherein the image comprises a number of simultaneously acquired images of the same scene, each including a large number of pixels, each at a different wavelength band, and including infrared through ultraviolet wavelengths. One method is for retrieving the aerosol/haze amount (i.e., visible range) from an assumed ratio of in-band reflectances, rather than from an assumed reflectance value. Another method is for identifying cloud-containing pixels. This is used to improve the calculation of the spatially averaged radiance L*e and reflectance ?e images in standard equations. Another method greatly reduces the number of mathematical operations required to generate the reflectance values.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: February 26, 2008
    Assignee: Spectral Sciences, Inc.
    Inventors: Steven M. Adler-Golden, Michael Matthew, Alexander Berk, Lawrence S. Bernstein, Gail Anderson
  • Patent number: 6909815
    Abstract: A method of automatically compensating a multi- or hyper-spectral, multi-pixel image for atmospheric effects, comprising resolving a plurality of spectrally-diverse pixels from the image, determining a spectral baseline from the spectrally-diverse pixels, determining a statistical spectral deviation of the spectrally-diverse pixels, normalizing the statistical spectral deviation by applying a scale factor, and compensating image pixels with both the spectral baseline and the normalized spectral deviation.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: June 21, 2005
    Assignee: Spectral Sciences, Inc.
    Inventors: Lawrence S. Bernstein, Steven M. Adler-Golden, Timothy C. Perkins, Alexander Berk, Robert Y. Levine
  • Patent number: 6640199
    Abstract: A system and method for remotely determining at least one of the temperature of, and the relative concentrations of species making up, a hot fluid, based on the spectral structure of radiation emitted from the fluid. Thermal radiation over a field of view including the hot fluid is collected. At least a portion of the emission spectrum from the collected radiation is resolved. The resolved emission spectrum is resolved into spectra that are characteristic of specific emitting species and emitter temperatures. The temperature of, and the relative concentrations of species making up, the hot fluid, are determined from the relative amounts of at least two resolved spectra.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: October 28, 2003
    Assignee: Spectral Sciences, Inc.
    Inventors: Neil Goldstein, John Gruninger, Fritz Bien, Jamine Lee
  • Patent number: 6066295
    Abstract: A method and device for remotely analyzing an agent dispersed in the atmosphere is disclosed in which a body is dispensed into a volumetric region of the atmosphere overlapping the region containing the agent. The body is tailored to induce changes in an electromagnetic response of the volumetric region including the agent due to body the reactive probe and the agent. By sensing electromagnetic radiation from the region, information may be gained concerning the agent based upon the new electromagnetic response of the volumetric region induced by the reactions. Since a probe is used, source need not be known, and the electromagnetic signature may be tailored to atmospheric and device limitations.
    Type: Grant
    Filed: May 31, 1996
    Date of Patent: May 23, 2000
    Assignee: Spectral Sciences, Inc.
    Inventors: Lawrence Steven Bernstein, Mitchelle Ross Zakin