Patents Assigned to Spectranetics
  • Publication number: 20100152720
    Abstract: Various embodiments of an offset catheter are provided. In some embodiments, an offset catheter includes a guidewire tube and a catheter coupled with an elastic and/or compressible rib. The compressible rib provides an offset or separation between the catheter and the guidewire tube in its resting state. The rib has an initial resting state, but may be forced into a compressed state. When released from the compressed state, the rib returns to its resting state. An offset catheter may be compressed and slid through a sheath. When the offset catheter emerges from the sheath, the distal tip will return to its resting state providing an operation offset.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: Spectranetics
    Inventors: Dennis M. Sauro, William T. Fisher
  • Publication number: 20100145259
    Abstract: A device suitable for removing material from a living being is provided, featuring an infusate pump, and an aspiration pump, both powered by a motor. The aspiration pump and infusate pump preferably feature a helical pumping mechanism, and operate at a high rate of rotation, thereby ensuring adequate pumping performance and flexibility. Additionally, a narrow crossing profile is maintained, ensuring that the device may reach more tortuous regions of the vasculature. In one embodiment, the system comprises a wire-guided mono-rail catheter with a working head mounted on a flexible portion of the catheter that can laterally displace away from the guide wire to facilitate thrombus removal. The working head may be operated to separate and move away from the guide wire to come within a closer proximity of the obstructive material to more effectively remove it from the vessel.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 10, 2010
    Applicant: The Spectranetics Corporation
    Inventors: John E. Nash, Greg Walters, Dennis M. Sauro, Mark Eberhart, William T. Fisher, Douglas G. Evans
  • Publication number: 20100114081
    Abstract: In some embodiments, without limitation, the invention comprises a catheter having an elongated housing with a channel disposed therein. A laser delivery member is movable and at least partially disposed within the channel. A ramp is disposed within the housing at an angle to its central axis and proximate to its distal end. The ramp is adapted to move the distal end of the laser delivery member outwardly from the central axis of the housing. A guidewire biases the distal end of the laser delivery member generally inwardly toward the central axis of the housing. In some embodiments, without limitation, the offset of the central axis of the tip of the laser delivery member from the central axis of the housing is determined by adjusting the extent to which the laser delivery member travels on the ramp, and disposition of the laser delivery member on the guidewire maintains the offset tip substantially parallel to the central axis of the housing.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 6, 2010
    Applicant: Spectranetics
    Inventors: Jacob Keeler, Melissa Brookshier
  • Patent number: 7666161
    Abstract: A device suitable for removing material from a living being is provided, featuring an infusate pump, and an aspiration pump, both powered by a motor. The aspiration pump and infusate pump preferably feature a helical pumping mechanism, and operate at a high rate of rotation, thereby ensuring adequate pumping performance and flexibility. Additionally, a narrow crossing profile is maintained, ensuring that the device may reach more tortuous regions of the vasculature. In one embodiment, the system comprises a wire-guided mono-rail catheter with a working head mounted on a flexible portion of the catheter that can laterally displace away from the guide wire to facilitate thrombus removal. The working head may be operated to separate and move away from the guide wire to come within a closer proximity of the obstructive material to more effectively remove it from the vessel.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: February 23, 2010
    Assignee: The Spectranetics Corporation
    Inventors: John E. Nash, Greg Walters, Dennis M. Sauro, Mark Eberhart, William T. Fisher, Douglas G. Evans
  • Patent number: 7651503
    Abstract: The invention provides an apparatus for cutting an endocardial lead within a patient. The apparatus includes a tubular member and a tension member disposed therein. The tension member includes a distal end and a proximal end. A blade is affixed to the distal end of the tension member and an adjustment mechanism is adapted to adjust the tension member and blade between an extended position and a retracted position. The adjustment mechanism includes a female member, a male member and an anchor. The anchor is affixed to the proximal end of the tension member and the male member. Insertion and withdrawal of the male member within the female member moves the tension member and the blade between the extended position and the retracted position. An alternate embodiment includes a capture mechanism or guide wire for drawing the apparatus and lead closer together before extending the blade and cutting the lead.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: January 26, 2010
    Assignee: The Spectranetics Corporation
    Inventors: Michael S. Coe, Duncan Sellers
  • Publication number: 20100016842
    Abstract: A catheter tip is provided according to various embodiments of the disclosure. The catheter tip may comprise a distal end, a proximal end, and tubular walls. The distal end includes a distal aperture with a distal inside diameter, and the proximal end includes a proximal aperture with a proximal inside diameter. The proximal inside diameter may be greater than the distal inside diameter. The proximal end comprises attachment means configured to couple the proximal end with a distal end of a laser catheter. The tubular walls may include at least an inside taper from the proximal end to the distal end such that the inner tubular walls generally taper from the proximal inside diameter to the distal inside diameter. Moreover, the tubular walls may be configured to direct at least a liquid medium, for example, a biocompatible solution, toward the distal aperture.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 21, 2010
    Applicant: Spectranetics
    Inventor: Clint Fix
  • Publication number: 20090299351
    Abstract: A catheter assembly is disclosed according to one embodiment of the invention. The assembly includes a catheter body, a housing and a detector. The catheter includes a distal tip, a proximal end, and a fiber optic extending between the proximal end and the distal tip. The housing may include a channel adapted to support at least a portion of the distal tip of the catheter. The may be detector disposed within the housing so as to be spaced a fixed distance from the distal tip of the catheter. Methods for providing and calibrating a catheter supported within housing are also disclosed according to other embodiments of the invention.
    Type: Application
    Filed: November 28, 2007
    Publication date: December 3, 2009
    Applicant: Spectranetics
    Inventor: Tom Dadisman
  • Publication number: 20090254074
    Abstract: A light-diverting catheter tip is provided according to embodiments disclosed herein. The light-diverting catheter tip may be coupled with the distal tip of a laser catheter and divert at least a portion of the light exiting the distal tip of the laser catheter such that the spot size of the laser beam on an object after exiting the catheter tip is larger than the spot size of the light entering the catheter without the catheter tip. The catheter tip may be removably coupled with the catheter or constructed as part of the catheter. In other embodiments, the catheter tip may conduct fluid and/or divert fluid at the tip of the laser catheter.
    Type: Application
    Filed: October 20, 2008
    Publication date: October 8, 2009
    Applicant: Spectranetics
    Inventors: Robert Splinter, Robert L. Carver, Ted A. Giem, Kevin D. Taylor, Clint Fix
  • Publication number: 20090221995
    Abstract: Embodiments of the present invention comprise a fiber optic guidewire having a hypotube with a plurality of openings that provide variable stiffness and tracking characteristics between at least one proximal segment and one distal segment of the guidewire. In some embodiments, the guidewire further comprises a mandrel disposed within the hypotube, the mandrel cooperating with the optical fibers to permit the distal end of the hypotube to be shaped as desired by a user. Methods of manufacturing and using the guidewire are also disclosed.
    Type: Application
    Filed: April 4, 2007
    Publication date: September 3, 2009
    Applicant: The Spectranetics Corporation
    Inventor: Kenneth D. Harlan
  • Patent number: 7572254
    Abstract: In some embodiments, without limitation, the invention comprises a catheter having an elongated housing with a channel disposed therein. A laser delivery member is movable and at least partially disposed within the channel. A ramp is disposed within the housing at an angle to its central axis and proximate to its distal end. The ramp is adapted to move the distal end of the laser delivery member outwardly from the central axis of the housing. A guidewire biases the distal end of the laser delivery member generally inwardly toward the central axis of the housing. In some embodiments, without limitation, the offset of the central axis of the tip of the laser delivery member from the central axis of the housing is determined by adjusting the extent to which the laser delivery member travels on the ramp, and disposition of the laser delivery member on the guidewire maintains the offset tip substantially parallel to the central axis of the housing.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: August 11, 2009
    Assignee: The Spectranetics Corporation
    Inventors: Chris J. Hebert, Wade A. Bowe, Timothy J. Wood, Scott Tedder
  • Publication number: 20090198221
    Abstract: In some embodiments, without limitation, the invention comprises a catheter having an elongated housing with a channel disposed therein. A laser delivery member is movable and at least partially disposed within the channel. A ramp is disposed within the housing at an angle to its central axis and proximate to its distal end. The ramp is adapted to move the distal end of the laser delivery member outwardly from the central axis of the housing. A guidewire biases the distal end of the laser delivery member generally inwardly toward the central axis of the housing. In some embodiments, without limitation, the offset of the central axis of the tip of the laser delivery member from the central axis of the housing is determined by adjusting the extent to which the laser delivery member travels on the ramp, and disposition of the laser delivery member on the guidewire maintains the offset tip substantially parallel to the central axis of the housing.
    Type: Application
    Filed: March 18, 2009
    Publication date: August 6, 2009
    Applicant: The Spectranetics Corporation
    Inventors: Chris J. Hebert, Wade A. Bowe, Timothy J. Wood, Scott Tedder
  • Patent number: 7563262
    Abstract: A guide wire assembly includes a guide wire, an optical fiber, and an insulating coating. The guide wire has a distal end, a proximal end, and a bore extending through the wire between the distal and proximal ends. The an optical fiber also includes a distal end and a proximal end and is located within the bore of the guide wire. The optical fiber extends at least between the distal and proximal ends of the guide wire. The insulating coating is around an outside diameter of the guide wire, and is applied such that the distal ends of the guide wire and optical fiber are exposed.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: July 21, 2009
    Assignee: The Spectranetics Corporation
    Inventors: Thomas R. Winston, John M. Neet
  • Publication number: 20090171330
    Abstract: A method of locating and ablating a target tissue is described. The method includes providing a catheter that has at least one light guide, where the light guide is adaptable to receive light from a light source. A distal portion of the catheter is advanced through vasculature of a patient towards the target tissue. A nanoparticle dye is introduced into the patient, where the nanoparticles selectively bind to the target tissue. The target tissue is mapped by detecting fluorescence light emitted from the nanoparticle dye bound to the tissue. The distal tip of the catheter is positioned adjacent to the mapped target tissue, and a light pulse is transmitted through the light guide to ablate at least a portion of the target tissue.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: Spectranetics
    Inventors: Kevin Taylor, Robert Splinter
  • Publication number: 20090163899
    Abstract: A fiber optic unit to ablate tissue with light is described. The unit may include a bundle of optical fibers having a bundle proximal end adaptable to a light source, and a hardened bundle distal end though which the light exits to reach the tissue. The unit may also include hard materials, such as metal or glass, formed around the distal ends of each of the optical fibers. The hard coatings may be fused or swaged to bond the distal ends of the optical fibers together.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Applicant: Spectranetics
    Inventors: George W. Burton, Holly A. Scott
  • Publication number: 20090163900
    Abstract: Embodiments of a balloon biasing laser catheter are provided. In some embodiments, the laser catheter may include a distal tip that extends from the distal end of the catheter from a point near the light guide aperture. The distal tip may be disposed at the periphery of the catheter. In some embodiments, a balloon may be disposed between the light guide aperture and the distal tip, such that the a light guide extending from the aperture may be disposed proximate with the distal tip having the balloon in between. A retaining wire may be coupled with the distal tip and slidably coupled with the light guide. The retaining wire may keep the light guide biased relatively parallel with the distal tip and/or the catheter body when the balloon is inflated. The light guide may include a guidewire lumen the extends to the distal end of the distal tip.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 25, 2009
    Applicant: Spectranetics
    Inventors: Kevin D. Taylor, Wade Bowe
  • Publication number: 20090147257
    Abstract: An optical sensor that provides lateral viewing while maintaining light polarization is disclosed according to one embodiment of the invention. The sensor includes a sensor body, at least one waveguide and at least one refractive optical element. The sensor body may includes proximal end and a distal end. The waveguide includes a proximal end coincident near the proximal end of the sensor body and a distal end coincident at a point near the distal end of the sensor body. The waveguide may include one or more fiber optic. The waveguide may be positioned within the sensor body. The refractive optical element may be positioned within the sensor near the distal end of the waveguide and may be configured to refract light received from the distal end of the waveguide outward from the sensor. The refractive optical element may include one or more prisms.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 11, 2009
    Applicant: Spectranetics
    Inventor: Robert Splinter
  • Publication number: 20090125007
    Abstract: A laser catheter with a pressure sensor is provided according to embodiments of the invention. The pressure sensor may be coupled with the distal end of the laser catheter and may comprise any of various piezoelectric materials, for example Polyvinylidene Difluoride (PVDF). In various embodiments of the invention the pressure sensor is configured to detect pressure longitudinally and coaxially. The pressure sensor may provide an electric potential that is proportional to the vessel pressure and may be used to monitor and/or adjust laser parameters. In other embodiments the results from the pressure sensor may be used to determine the vessel size and/or the type of material being ablated.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 14, 2009
    Applicant: Spectranetics
    Inventor: Robert Splinter
  • Publication number: 20090112198
    Abstract: A catheter system to ablate target matter within a mammalian body using light energy is described. The system may include an open-ended catheter tip through which a liquid light guide medium flows to the target matter, where at least a portion of the liquid light guide medium exiting the catheter tip creates a fluid optical channel to transmit the light energy from the catheter tip to the target matter. The system may also include a catheter lumen whose distal end includes the open-ended catheter tip, a light source to generate the light energy, and a liquid light guide medium source fluidly coupled to the catheter lumen. The liquid light guide medium source may include a reservoir of the liquid light guide medium that includes a magnesium chloride solution or a lactated Ringer's solution.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 30, 2009
    Applicant: Spectranetics
    Inventors: Krishn Khanna, Robert Splinter
  • Patent number: 7499756
    Abstract: A lead locking device has a lead engaging member with a mandrel extending along a lumen and attached to the distal end of the lead engaging member such that it extends beyond the proximal end of the lead engaging member. The lead locking device also has a loop handle attached to the proximal end of the mandrel. The lead engaging member has a first configuration which is narrower than a second configuration and is sufficiently long to extend along substantially the entire length of a lead to be removed from a patient's body. At the distal end, a spring coil is disposed around a tapered section of the mandrel to improve tracking of the lead locking device through the inner lumen of a pacing or defibrillator lead.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: March 3, 2009
    Assignee: Spectranetics
    Inventors: Wade A. Bowe, Kevin D. Taylor, Michael Sean Coe, Kenneth D. Harlan, Brian Kagarise, Thomas E. Plasket
  • Publication number: 20080300662
    Abstract: A custom laser sequencing system is disclosed. The system may include a laser coupled with a catheter. The catheter may include a fiber optic that directs light from the laser toward unwanted material on a vessel wall. The system may also include a modulator and a controller. The modulator is adapted to modulate the operational parameters of the laser, such as, the repetition rate and/or the fluence. The controller may be electrically coupled with the modulator and adapted to include instruction to cause the modulator to pulse the laser with a first set of operational parameters, and while the laser is pulsing, pulse the laser with a second set of operational parameters.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 4, 2008
    Applicant: Spectranetics
    Inventor: Kevin D. Taylor