Abstract: An aspect includes a vehicle that includes rail inspection sensors configured for capturing transducer data describing the rail, and a processor configured for receiving and processing the transducer data in near-real time to determine whether the captured transducer data identifies a suspected rail flaw. The processing includes inputting the captured transducer data to a machine learning system that has been trained to identify patterns in transducer data that indicate rail flaws. The processing also includes receiving an output from the machine learning system, the output indicating whether the captured transducer data identifies a suspected rail flaw. An alert is transmitted to an operator of the vehicle based at least in part on the output indicating that the captured transducer data identifies a suspected rail flaw. The alert includes a location of the suspected rail flaw and instructs the operator to stop the vehicle and to perform a repair action.
Abstract: A system and method for inspecting a rail is provided. The system includes an ultrasonic transducer positioned to emit an ultrasonic beam onto the rail and receive a refraction beam, the ultrasonic transducer being movable between a first position and a second position. A sensor is operable to measure an angle of a carriage, the carriage being positioned on the rail. A controller is operably coupled to the sensor, the controller having a processor that is responsive to executable computer instructions when executed on the processor to cause the ultrasonic transducer to move to receive refraction beam in response to the measured angle indicating a rail radius of less than a predetermined first threshold.
Abstract: A rolling search unit including an ultrasonic device and a heat exchanger mounted within a fluid-filled tire may be utilized to perform ultrasonic testing on an underlying railroad rail. The ultrasonic device may transmit or receive ultrasonic beams into or from the railroad rail, and the heat exchanger may be utilized to maintain the temperature of the fluid within the tire at a preferred level or within a preferred range. In such a manner, the results of testing obtained using the rolling search unit may be standardized regardless of the ambient temperature in the environment where the testing is being performed, and regardless of any heat gained or lost by the rolling search unit during operation.