Abstract: The described method and system allow the simultaneous detection of multicolored samples, e.g. in live cells or tissues, in a simple experimental geometry. It relies on combining ultrashort ultra-broadband laser sources (10) with a fluorescence microscope setup able to collect fluorescence intensities and/or photon arrival times per excitation volume, as well as nonlinear signals, such as second/third-harmonic and sum-frequency generation. In the description, the presented method is referred to as “SyncRGB method”.
Abstract: The present application relates to a method and system for characterization and compression of ultrashort pulses. It is described a flexible self-calibrating dispersion-scan technique and respective system to characterize and compress ultrashort laser pulses over a broad range of pulse parameters, where previous knowledge of the amount of dispersion introduced for each position or step of the compressor is not required. The self-calibrating d-scan operation is based on the numerical retrieval of the spectral phase of the pulses using an optimization algorithm, where the spectral phase is treated as a multi-parameter unknown variable, and where the unknown dispersion of the dispersion scanning system is described by a theoretical model of its functional dependence on the compressor position.
Type:
Grant
Filed:
June 26, 2018
Date of Patent:
June 15, 2021
Assignees:
SPHERE ULTRAFAST PHOTONICS SL, UNIVERSIDAD DE SALAMANCA
Inventors:
Benjamin Alonso Fernandez, Inigo Juan Sola Larranaga, Helder Manuel Paiva Rebelo Cerejo Crespo