Patents Assigned to SphereRx, LLC
  • Publication number: 20210154339
    Abstract: A radiation therapy product of spherical nanoporous glass beads that are loaded with a radionuclide. Each microsphere has a diameter in the range of about 25 to 60 microns. The pore structure of each microsphere occupies between about 30 and 90 percent of the microsphere's volume, and the inner surface area measures between about 30 and 500 m2/g. One or more radionuclides is embedded in the nanopores of each microsphere. In a preferred embodiment the product has at least two radionuclides, a first radionuclide achieves a therapeutic effect and a second radionuclide has nuclear medical diagnostic properties. Preferably the therapeutic radionuclide is Y-90 and the diagnostic radionuclide is In-111, Ga-68, or Ga-67. In a preferred embodiment the radionuclides are made less soluble or insoluble in blood components to avoid leaching or washing the radionuclide away.
    Type: Application
    Filed: February 4, 2021
    Publication date: May 27, 2021
    Applicant: SphereRx LLC
    Inventor: Eberhard FRITZ
  • Patent number: 10940219
    Abstract: Microspheres made of solid glass are used in radiation therapy, wherein the radiotherapeutic radionuclide must be generated in the glass by neutron activation. Microspheres of this type have a high radioactive load, are relatively heavy and contain additional non-therapeutic radionuclides. Additionally, radioactive microspheres made of plastic are used, which can be loaded with radionuclides by chemical means. These microspheres have a lower loading capacity, no additional radionuclides, and are lighter. The therapeutic radionuclide in both cases is Y-90. Microspheres made of nanoporous glass contain the therapeutic radionuclide, have a high loading capacity, require no neutron activation, can be parallel charged with multiple therapeutic and with diagnostic radionuclides, and are very light. It is possible to produce them in a radiochemical laboratory. Microspheres of this type can also be used diagnostically in preparation for therapy.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: March 9, 2021
    Assignee: SphereRx, LLC
    Inventor: Eberhard Fritz
  • Publication number: 20190336624
    Abstract: Microspheres made of solid glass are used in radiation therapy, wherein the radiotherapeutic radionuclide must be generated in the glass by neutron activation. Microspheres of this type have a high radioactive load, are relatively heavy and contain additional non-therapeutic radionuclides. Additionally, radioactive microspheres made of plastic are used, which can be loaded with radionuclides by chemical means. These microspheres have a lower loading capacity, no additional radionuclides, and are lighter. The therapeutic radionuclide in both cases is Y-90. Microspheres made of nanoporous glass contain the therapeutic radionuclide, have a high loading capacity, require no neutron activation, can be parallel charged with multiple therapeutic and with diagnostic radionuclides, and are very light. It is possible to produce them in a radiochemical laboratory. Microspheres of this type can also be used diagnostically in preparation for therapy.
    Type: Application
    Filed: July 9, 2019
    Publication date: November 7, 2019
    Applicant: SphereRx, LLC
    Inventor: Eberhard FRITZ
  • Publication number: 20160331854
    Abstract: A radiation therapy product of spherical nanoporous glass beads that are loaded with a radionuclide. Each microsphere has a diameter in the range of about 25 to 60 microns. The pore structure of each microsphere occupies between about 30 and 90 percent of the microsphere's volume, and the inner surface area measures between about 30 and 500 m2/g. One or more radionuclides is embedded in the nanopores of each microsphere. In a preferred embodiment the product has at least two radionuclides, a first radionuclide achieves a therapeutic effect and a second radionuclide has nuclear medical diagnostic properties. Preferably the therapeutic radionuclide is Y-90 and the diagnostic radionuclide is In-111, Ga-68, or Ga-67. In a preferred embodiment the radionuclides are made less soluble or insoluble in blood components to avoid leaching or washing the radionuclide away.
    Type: Application
    Filed: October 30, 2014
    Publication date: November 17, 2016
    Applicant: SphereRx, LLC
    Inventor: Eberhard FRITZ