Abstract: The present invention provides a linear fastening system capable of rapid engagement and disengagement. More specifically, the system utilizes a cooperating collet member and a compression ring member which are constructed and arranged to slip easily over a shank member. The fastener system is secured by sliding a compression member in a linear overlapping fashion over the collet member thereby utilizing the conical surfaces to compress the collet member to grip the outer surface of the shank member. In this manner, the linear fastener system is capable of providing a secure connection between multiple components without the need to apply rotational torque to the assembly.
Type:
Grant
Filed:
September 10, 2003
Date of Patent:
July 19, 2011
Assignee:
Spinal LLC
Inventors:
Robert L. Doubler, John E. Hammill, Sr.
Abstract: The present invention provides a linear fastening system capable of rapid engagement and disengagement. More specifically, the system utilizes a cooperating collet member and a compression ring member which are constructed and arranged to slip easily over a shank member. The fastener system is secured by linearly traversing a compression member in an overlapping fashion over the collet member thereby utilizing ribbed surfaces to compress the collet member to grip the outer surface of the shank member. In this manner, the linear fastener system is capable of providing a precise, secure, and reproducible connection between multiple components without the need to apply rotational torque to the assembly.
Type:
Grant
Filed:
August 22, 2007
Date of Patent:
January 4, 2011
Assignee:
Spinal, LLC
Inventors:
Robert L. Doubler, John E. Hammill, Sr.
Abstract: This disclosure relates to spinal fixation assemblies for use in spinal fixation constructs. The final fixation assemblies include fastening arrangements for clamping components of the assemblies at desired positions. The fastening arrangements are moved from pre-finally clamped orientations to finally clamped orientations through the use of linear force. An installation tool can be used to inhibit linear force from being transferred to the patient.
Type:
Grant
Filed:
August 5, 2004
Date of Patent:
March 16, 2010
Assignee:
Spinal, LLC
Inventors:
Robert L. Doubler, John E. Hammill, Sr.
Abstract: A bone plate for stabilizing adjacent vertebrae or ends of a bone having a span for extending across the discontinuity. The span has brackets for attaching to the bone. The brackets have countersunk apertures terminating through which bone screws are placed in the bone. An cam bore is located between the countersunk apertures and a cam with lobe surfaces is positioned in the cam bore. Upon rotation of the cam, the lobe surfaces engage an end of the wedge shoes and move them so that the other end of the wedge shoes move into the countersunk apertures and frictionally engage the heads of the bone screws. The wedge shoe is provided with means to lock the cam in position. The wedge shoe is also provided with means to indicate that the shoe has completely engaged the head of the bone screw in the countersunk aperture.
Abstract: A bone plate kit for stabilizing adjacent vertebrae or ends of a bone includes several bone plates of different sizes and several bone fasteners of the same or different sizes. The fasteners may have the same configuration or several different configurations. The fasteners may be coated with bone growth material. The plates have a span for extending across a discontinuity. The span has brackets for attaching to the bone. The brackets have countersunk apertures terminating through which bone screws are placed in the bone. An eccentric cam bore is located between the countersunk apertures and, upon rotation of an eccentric cam, wedge grip shoes are slid into the countersunk apertures and frictionally engage the spherical heads of the bone screws. To prevent back-out of the bone screws, the eccentric cam is locked into the wedge grip shoes.
Abstract: A bone plate for stabilizing adjacent vertebrae or ends of a bone has a span for extending across the discontinuity. The span has brackets for attaching to the bone. The brackets have countersunk apertures terminating through which bone screws are placed in the bone. An eccentric cam bore is located between the countersunk apertures and, upon rotation of an eccentric cam, wedge grip shoes are slid into the countersunk apertures and frictionally engage the spherical heads of the bone screws. To prevent back-out of the bone screws, the eccentric cam is locked into the wedge grip shoes.
Abstract: A low profile orthopedic device is used to fix and stabilize bones to correct anomalies in skeletal structure occurring naturally or by trauma. Bone screws are screwed into bones by application of torque. Clamps are movably attached to the screws. Each clamp includes a compression ring. A connecting rod connects several screws through slots in the clamps. The clamps are tightened to hold the rod and the heads in a pre-selected position by linear movement of the compression rings.
Abstract: A low profile orthopedic device is used to fix and stabilize bones to correct anomalies in skeletal structure occurring naturally or by trauma. Bone screws are screwed into bones by application of torque. Clamps are movably attached to the screws. Each clamp includes a compression ring. A connecting rod connects several screws through slots in the clamps. The clamps are tightened to hold the rod and the heads in a pre-selected position by linear movement of the compression rings.