Abstract: The present invention relates to a vertebral osteosynthesis plate to maintain relative vertebral orientation correction using a correction instrument. The osteosynthesis plate has an overall rectangular shape and comprises at least four slots to insert, in each, fixation devices, wherein at least two of the slots opens onto a lateral edge of the osteosynthesis plate to enable positioning and fixation of the plate with no prior removal of the relative vertebral orientation correction instrument. The edge of the plate is defined by an edge located in the same direction as the longitudinal direction of the plate. The longitudinal direction of the plate is roughly identical to that of the direction of the spinal column.
Abstract: A connecting assembly for spinal osteosynthesis has a bone anchoring element including a connection zone designed to co-operate with a connecting device. The connecting device comprises in its lower part a spherical shape designed to enable the connecting device to be freely positioned in a connector or in a linking element having a cavity with matching shape, the spherical shape forming a stop element for longitudinal positioning with the connector or with the linking element.
Abstract: A connection assembly for spinal osteosynthesis has a bone-anchor having a connection zone intended to cooperate with a connection device, in which the connection device has, in its lower part, a spherical shape in order to permit a free positioning of the connection device in connector. The connector has a cavity of complementary shape to the spherical shape. This spherical shape forms a limit of longitudinal positioning with the connector.
Abstract: A connector for an osteosynthesis system is intended to provide a connection between a rigid correction rod of circular cross section and a transverse connection element of a spinal osteosynthesis system. The connector comprises a hook having a first semicylindrical seat oriented substantially along a first axis to receive the correction rod in a sliding manner. The connector also having a second seat having an axis substantially perpendicular to the first axis. The second seat opening into the first seat to receive a substantially spherical end of a transverse rod of the transverse connection element. The second seat comprises a tapped hole with an axis oriented substantially perpendicular to the axis of the second seat in order to receive a clamping screw which will exert pressure on the spherical end of the transverse rod, the spherical end coming to bear on the correction rod.
Abstract: The invention concerns an osteosynthesis system, comprising at least a linking element in the form of a rod, at least two fixing elements each capable of being anchored in a vertebra, and a locking screw. The invention is characterized in that the base of the head has a general horse-saddle shape, and the head has guide means for an independent closure component designed to be fixed on the head after the linking element has been positioned in the fork of the head, said closure component being generally U-shaped whereof the branches are urged to co-operate with the branches of-the fork-shaped part of the head and whereof the base comprises an internal thread for co-operating with the locking screw and the guide means provided on the head is formed by an arc-shaped shoulder on the outer side surfaces of the fork-shaped part. The invention also concerns an ancillary and an element for fixing such a system.
Abstract: The present invention concerns a method and equipment for drilling bone, in particular for setting a pedicle screw using a manual or motorized drilling tool. The equipment includes a drilling instrument, a source of electric impulses and a connector for connecting the electric impulse source to the drilling instrument. The equipment includes at least one sensor for detecting a muscle signal either implanted in a muscle or placed on the skin in the vicinity of a muscle before and during drilling. An alert is produced in the event of detection by at least one sensor of a muscle signal correlated with the source of electric impulses connected to the drilling instrument.
Abstract: The present invention relates to an interbody spinal stabilization method and an interbody spinal stabilization cage. The cage has a parallelepipedic shape and comprises a central hollow space intended to be filled with bone fragments. The cage also comprises anchoring device(s) having an overall S shape and opening onto lateral faces connecting with adjacent vertebrae, actuated by at least one actuation device opening into a front face. The anchoring device(s) each have at least one main cutting edge.
Abstract: A prehension device for grasping an implant, implanting the implant and manipulating the implant including prehension means intended to cooperate with receiving means, wherein the prehension means has a form shaped like an arc of a circle, the peripheral edges of which are provided with at least one peripheral chamfer. The invention also pertains to a surgical instrument equipped with a prehension device and to an implant equipped with a prehension device.