Abstract: A method and system for controlling operation of a first access node that supports operation according to a first radio access technology (RAT) but does not support dual-connectivity operation according to the first RAT and a second RAT. A controller detects a high extent of occurrences of dual-connectivity-capable user equipment devices (UEs) being connected with the first access node when the dual-connectivity-capable UEs could instead connect with a second access node that supports the dual-connectivity operation. And in response, the controller suppresses coverage of the first access node, such as by reducing a maximum signal delay that the first access node applies for determining whether to accept random-access requests from UEs and/or (ii) reducing reference-signal transmission power of the first access node.
Type:
Grant
Filed:
May 5, 2021
Date of Patent:
March 21, 2023
Assignee:
Sprint Spectrum LLC
Inventors:
Hemanth B. Pawar, Krishna Sitaram, Shilpa K. Srinivas
Abstract: When a first access node is considering setup of dual-connectivity service for a UE, the first access node could take into consideration the MU-MIMO grouping efficiency respectively of each of one or more candidate second access nodes, in order to decide whether to set up the dual-connectivity service for the UE and/or to decide which of the multiple second access nodes to use for the UE's dual-connectivity service. MU-MIMO grouping efficiency of a given access node could be a representative count of UEs that the access node has provided with MU-MIMO service per unit time. Thus, for instance, the first access node may decide to use a given candidate second access node for the dual-connectivity service of the UE, with the decision being based on the given candidate second access node having a higher MU-MIMO grouping efficiency than one or more other candidate second access nodes.
Abstract: A method and system for controlling uplink-path switching of a user equipment device (UE) when the UE has at least two co-existing air-interface connections including a first air-interface connection with a first access node and a second air-interface connection with a second access node, and where one of the first and second air-interface connections defines a primary uplink path of the UE. An example method includes (i) predicting that a handover trigger for handover of the UE from the first access node to a third access node will occur and (ii) responsive to at least the prediction that the handover trigger will occur, but before the handover trigger occurs, forgoing application of at least a portion of an uplink-path-switch control process for dynamically controlling which of the UE's connections will be set as the UE's primary uplink path.
Abstract: A method and system to help prevent legacy devices that do not support a service feature such as uplink-downlink subcarrier shifting from connecting with an access node on a carrier where the service feature should be applied. An example method involves use of Network Signaling (NS) values that are used for spectral emission control. Per the disclosure, the access node could broadcast an NS value that legacy device are not configured to understand but that newer devices are configured to understand as relating to both spectral emission limitation and also the service feature at issue. Responsive to the broadcast of that NS value, the legacy devices will therefore not connect with the access node, while the newer devices may connect with the access node and apply the service feature.
Abstract: When a first access node is considering setup of dual-connectivity service for a UE, the first access node could take into consideration a group delay variation of each of one or more candidate second access nodes, in order to decide whether to set up the dual-connectivity service for the UE and/or to decide which of the multiple second access nodes to use for the UE's dual-connectivity service. For instance, the first access node may decide to use a given candidate second access node for the dual-connectivity service of the UE, with the decision being based on the given candidate second access node having a lower group delay variation than one or more other candidate second access nodes.
Abstract: A method and system for controlling data split of a dual-connected user equipment device (UE) when the UE has at least two co-existing air-interface connections including a first air-interface connection with a first access node and a second air-interface connection with a second access node. An example method includes (i) comparing an aggregate frequency bandwidth of the first air-interface connection with an aggregate frequency bandwidth of the second air-interface connection, (ii) based at least on the comparing, establishing a split ratio that defines a distribution of data flow of the UE between at least the first air-interface connection and the second air-interface connection, and (iii) based on the establishing, causing the established split ratio to be applied. Further the method could include using the comparison as a basis to set one of the UE's air-interface connections as the UE's primary uplink path.
Abstract: When an access node is providing a UE with carrier-aggregation service on a PCell in combination with one or more SCells and the UE engages in a voice call including uplink voice communication on the PCell, the access node will determine that there is a threshold high level of IMD on the uplink resulting from concurrent downlink transmissions, and the access node will responsively swap the UE's PCell with one of the UE's one or more SCells. In a representative implementation, the decision to swap these carriers in the UE's connection could be based on a further determination that the level of IMD on the uplink of the SCell is not threshold high.