Patents Assigned to SRU Biosystems, Inc.
  • Patent number: 8344333
    Abstract: A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, which can be fabricated uniformly from plastic materials over a ˜3×5 in2 surface area by nanoreplica molding, features a 1-D periodic grating structure which utilizes two distinct resonant modes to enhance electric field stimulation of a first dye excited by a first laser (e.g., ?=632.8 nm laser exciting cyanine-5) and a second dye excited by a second laser (e.g., ?=532 nm laser exciting cyanine-3). The first and second lasers could be replaced by a single variable wavelength (tunable) laser. Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle ?. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in a given wavelength range (e.g., the range 532 nm<?<660 nm) by selection of an appropriate incident angle.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 1, 2013
    Assignees: The Board of Trustees of the University of Illinois, SRU Biosystems, Inc.
    Inventors: Meng Lu, Stephen C. Shulz, Brian T. Cunningham, Anusha Pokhriyal
  • Publication number: 20120107840
    Abstract: The invention provides methods of detecting activation of an immune cell, methods for detecting blocking or enhancing properties of a test reagent or stimuli on activation of one or more immune cells or platelets, methods for selecting hybridomas producing antibodies to an antigen for quality of strength of binding to the antigen, methods for determining if a subject has had an immune response to an immunogen, methods of isolating neutralizing antibodies for an immunogen, methods of classifying a B cell lymphoma, and methods for selecting activated B-cells expressing an antibody to one or more antigens.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 3, 2012
    Applicant: SRU Biosystems, Inc
    Inventors: Richard W. Wagner, Kaan Certel, Steven Shamah, Alexander Yuzhakov, Lance G. Laing
  • Publication number: 20120069334
    Abstract: An optical arrangement for illuminating a surface of a biosensor having a periodic surface grating structure. The arrangement includes a light source generating light, collimating optics for collimating the light from the light source, and a first reflecting surface (e.g., prism surface) receiving light from the collimating optics and directing incident light onto a surface of the biosensor and a second spatially separated reflecting surface receiving light reflected from the surface of the biosensor. The arrangement further includes telecentric optics (e.g., telecentric lens) receiving light from the second surface of the prism. The telecentric lens directs light onto an entrance slit of a spectrometer. The arrangement increases the light collection efficiency at the spectrometer as compared to prior art arrangements.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Applicant: SRU Biosystems, Inc.
    Inventor: Bennett H. Rockney
  • Patent number: 8101423
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: January 24, 2012
    Assignee: SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Jane Pepper, Bo Lin, Peter Li
  • Patent number: 8094305
    Abstract: An optical arrangement for illuminating a surface of a biosensor is described. The biosensor is preferably a sensor having periodic surface grating structure. The arrangement includes a light source generating light, collimating optics for collimating the light from the light source, and first reflecting surface receiving light from the collimating optics and directing incident light onto a surface of the biosensor and a second spatially separated reflecting surface receiving light reflected from the surface of the biosensor. The arrangement further includes telecentric optics (e.g., telecentric lens) receiving light from the second surface of the prism. The telecentric lens directs light onto an entrance slit of a spectrometer. The arrangement increases the light collection efficiency at the spectrometer as compared to prior art arrangements.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 10, 2012
    Assignee: SRU Biosystems, Inc.
    Inventor: Bennett H. Rockney
  • Patent number: 8061220
    Abstract: A device for simultaneously dispensing a solution containing a sample to a test device and aspirating the sample from the device. In one embodiment the device is hand-held and includes a control mechanism, e.g., button for activating the dispensing and aspiration of the sample. The testing device may take the form of a multi-well plate with a plurality of wells arranged in rows and columns, with the bottom of the wells formed as a photonic crystal biosensor. The device can be configured with dispense and aspirate manifolds and associated dispense and aspirate ports which are positioned in all the wells along a row or column of wells so as to simultaneously aspirate and dispense solution to all the wells in a row or column of the multi-well plate.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 22, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Lance G. Laing, Timothy F. Smith, John Gerstenmeier, III, Gangadhar Jogikalmath
  • Patent number: 7960170
    Abstract: A grating-based sensor is disclosed that has a grating structure constructed and designed for both evanescent resonance (ER) fluorescence detection and label-free detection applications. Some embodiments are disclosed which are optimized for ER detection in an air mode, in which the sample is dry. Other embodiments are optimized for ER detection in liquid mode, in which the sample is suspended in liquid medium such as water. One and two-dimensional gratings are also disclosed, including gratings characterized by unit cells with central posts, central holes, and two-level, two-dimensional gratings. A readout system for such sensors is also disclosed. One embodiment includes a first light source optimized for collecting label-free detection data, a second light source optimized for collecting ER fluorescence amplification data, and at least one detector. In one embodiment, the detector is an imaging system and includes a CCD camera for collecting both ER and label-free data.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: June 14, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Stephen C. Schulz, Brian T. Cunningham, Lance G. Laing, Peter Y. Li, Brant Binder, Gangadhar Jogikalmath, Alex Borsody
  • Patent number: 7935520
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: May 3, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Jane Pepper, Bo Lin, Peter Li, Homer Pien, Jean Qiu
  • Patent number: 7927789
    Abstract: The invention relates to compositions and methods for detecting biomolecular interactions. The detection can occur without the use of labels and can be done in a high-throughput manner. The invention further relates to self-referencing colorimetric resonant optical biosensors and optical devices.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: April 19, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Cheryl Baird, Brian T. Cunningham, Peter Li
  • Patent number: 7927822
    Abstract: The invention provides methods of detecting a change in cell growth patterns, methods of screening many different antibodies in one receptacle, and methods of detecting specific binding of an antibody to a protein or cell, wherein the antibody is in a mixture of many different antibodies.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 19, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Christine C. Genick, Lance G. Laing, Peter Li, Timothy F. Smith, Lara Madison, William C. Karl, Bo Lin
  • Patent number: 7923239
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 12, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Peter Li, Jean Qiu, Homer Pien
  • Patent number: 7875434
    Abstract: The instant invention provides compositions and methods for determining cell interactions that are faster than conventional methods and that require the use of fewer reagents than conventional methods.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: January 25, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Bo Lin, Brian T. Cunningham, Peter Li
  • Patent number: 7863052
    Abstract: A grating-based sensor is disclosed that has a grating structure constructed and designed for both evanescent resonance (ER) fluorescence detection and label-free detection applications. Some embodiments are disclosed which are optimized for ER detection in an air mode, in which the sample is dry. Other embodiments are optimized for ER detection in liquid mode, in which the sample is suspended in liquid medium such as water. One and two-dimensional gratings are also disclosed, including gratings characterized by unit cells with central posts, central holes, and two-level, two-dimensional gratings. A readout system for such sensors is also disclosed. One embodiment includes a first light source optimized for collecting label-free detection data, a second light source optimized for collecting ER fluorescence amplification data, and at least one detector. In one embodiment, the detector is an imaging system and includes a CCD camera for collecting both ER and label-free data.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 4, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Stephen C. Schulz, Brian T. Cunningham, Lance G. Laing, Peter Y. Li, Brant Binder, Gangadhar Jogikalmath, Alex Borsody
  • Patent number: 7832291
    Abstract: A method of making a measurement of binding affinity of a sample comprises the steps of: introducing the sample into a well having a bottom formed as a photonic crystal biosensor, wherein a portion of the sample becomes bound to the biosensor; making a measurement of the change in the shift in peak wavelength value as a function of time (kon) from the well as the sample is introduced into the well; simultaneously dispensing the sample to the well and aspirating the sample from the well and measuring the change in the shift in peak wavelength value as a function of time (koff) during the simultaneous dispensing and aspirating, and calculating an equilibrium association constant or an equilibrium dissociation constant for the sample from the values of kon and koff.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: November 16, 2010
    Assignee: SRU Biosystems, Inc.
    Inventors: Lance G. Laing, Timothy F. Smith, John Gerstenmeier, III, Gangadhar Jogikalmath
  • Patent number: 7790406
    Abstract: A grating-based sensor is disclosed that has a grating structure constructed and designed for both evanescent resonance (ER) fluorescence detection and label-free detection applications. One and two-dimensional gratings are also disclosed, including gratings characterized by unit cells with central posts, central holes, and two-level, two-dimensional gratings. A readout system for such sensors is also disclosed. Various applications for the biosensors are described, including cell-based assays for assessing the effect of drug compounds on cell function. A biosensor embodiment optimized for a luminescent response at two different wavelengths is also described. Such luminescent response could be produced by fluorescence (either native or from an attached fluorophore), phosphorescence, chemi-luminescence, or other luminescence technology. Two different luminescence technologies could be combined on the same biosensor chip.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: September 7, 2010
    Assignee: SRU Biosystems, Inc
    Inventors: Brian T. Cunningham, Peter Y. Li, Lance G. Laing, Gangadhar Jogikalmath
  • Publication number: 20100196925
    Abstract: The invention provides methods of detecting a change in cell growth patterns, methods of screening many different antibodies in one receptacle, and methods of detecting specific binding of an antibody to a protein or cell, wherein the antibody is in a mixture of many different antibodies.
    Type: Application
    Filed: April 13, 2010
    Publication date: August 5, 2010
    Applicant: SRU Biosystems, Inc.
    Inventors: Christine C. Genick, Lance G. Laing, Peter Li, Timothy F. Smith, Lara Madison, William C. Karl, Bo Lin
  • Publication number: 20100195099
    Abstract: An optical arrangement for illuminating a surface of a biosensor is described. The biosensor is preferably a sensor having periodic surface grating structure. The arrangement includes a light source generating light, collimating optics for collimating the light from the light source, and first reflecting surface receiving light from the collimating optics and directing incident light onto a surface of the biosensor and a second spatially separated reflecting surface receiving light reflected from the surface of the biosensor. The arrangement further includes telecentric optics (e.g., telecentric lens) receiving light from the second surface of the prism. The telecentric lens directs light onto an entrance slit of a spectrometer. The arrangement increases the light collection efficiency at the spectrometer as compared to prior art to prior art arrangements.
    Type: Application
    Filed: September 25, 2009
    Publication date: August 5, 2010
    Applicant: SRU Biosystems, Inc.
    Inventor: Bennett H. Rockney
  • Patent number: 7756365
    Abstract: Biosensors are disclosed based on one- or two-dimensional photonic-crystal reflectance filters operating at near-ultraviolet wavelengths. The biosensors feature a tightly confined resonant electric field at the surface of this biosensor and provide a high surface-sensitivity to bulk-sensitivity ratio, and therefore enables enhanced detection resolution for biomolecules adsorbed on the biosensor surface. These new biosensors can be fabricated in mass by replica molding. They are especially well suited for applications requiring the detection of small molecules or ultra-low analyte concentrations.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: July 13, 2010
    Assignees: University of Illinois, SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Nikhil Ganesh, Ian D. Block
  • Patent number: 7737392
    Abstract: Photonic crystal (PC) sensors, and sensor arrays and sensing systems incorporating PC sensors are described which have integrated fluid containment and/or fluid handling structures. The PC sensors are further integrated into a sample handling device such as a microwell plate. Sensors and sensing systems of the present disclosure are capable of high throughput sensing of analytes in fluid samples, bulk refractive index detection, and label-free detection of a range of molecules, including biomolecules and therapeutic candidates. The present disclosure also provides a commercially attractive fabrication platform for making photonic crystal sensors and systems wherein an integrated fluid containment structure and a photonic crystal structure are fabricated in a single molding or imprinting processing step amendable to high throughput processing.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: June 15, 2010
    Assignees: The Board of Trustees of the University of Illinois, SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Charles Choi
  • Patent number: 7718440
    Abstract: Performing high-resolution determination of the relative shift of the spectral properties of a biosensor. The shift in the resonance peak of the biosensor is indicative of the amount of material bound to the surface of the biosensor. A preferred biosensor is a Guided Mode Resonant Filter Biosensor (GMRFB). In one aspect of the invention, curve fitting is used to determine the relative location of the spectrum of the unexposed biosensor with respect to those spectra that are altered (e.g., shifted) by the presence of materials bound to the surface of the biosensor. In an alternative embodiment, the cross correlation function is used to detect spectral peak offsets between a reference spectrum and a spectrum measured from an exposed biosensor. In yet another alternative, maximal likelihood estimation techniques are used to determine the spectral shift or offs.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: May 18, 2010
    Assignee: SRU Biosystems, Inc.
    Inventors: Homer Paul Pien, William C. Karl, Derek Puff, Peter Li, Brian Cunningham