Patents Assigned to ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, IN
  • Patent number: 11896284
    Abstract: A catheter and patch electrode system is provided for use with an apparatus, such as an ablation generator, having a 4-wire interface for improved impedance measurement. The 4-wire interface includes a pair of source connectors across which an excitation signal is produced and a pair of sense connector wires across which the impedance is measured. The RF ablation generator may also produce an ablation signal across a source wire and an indifferent return patch electrode. The system further includes a cable that connects the generator to a catheter. The catheter includes a shaft having a proximal end and a distal end, with an ablation tip electrode disposed at the distal end. A source lead is electrically coupled to the tip electrode and extends through the shaft to the proximal end where it is terminated. An optional sense lead is also electrically coupled to the tip electrode and extends through the shaft to the proximal end. The system further includes a source return (e.g.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: February 13, 2024
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc
    Inventors: Stephan P. Miller, Glen H. Kastner, Donald Curtis Deno
  • Patent number: 11871986
    Abstract: The invention relates to ablation catheter electrodes that solve in part the problem of tissue charring during radiofrequency ablation. The electrode assemblies of the invention include passageways that lead from the inner lumen of the assemblies to the surface of the assemblies, wherein the passageways have a smooth conjunction with the outer surface. These smooth conjunctions comprise rounded edges or are chamfered. In the case of rounded edges, the rounded edges can have fixed radii of about 0.002? to about 0.008?.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: January 16, 2024
    Assignee: St. Jude Medical, Atrial Fibrillation Division Inc.
    Inventors: Huisun Wang, Sacha C. Hall
  • Patent number: 11839424
    Abstract: A monitoring, managing and protecting system is provided that includes a monitoring probe working in conjunction with an ablating device. The probe is configured to be positioned in close proximity to a region of non-targeted tissue proximate an ablation site of targeted tissue and to be operatively connected to an electrical response assessment system or component. The probe includes an elongate shaft having proximal and distal ends, with a handle disposed at the proximal end thereof and a tissue monitoring and protecting apparatus disposed at the distal end thereof. The ablating device includes an elongate shaft having proximal and distal ends, with a handle mounted at the proximal end thereof and an ablation element mounted at the distal end thereof. The monitoring probe measures electrical characteristics of the non-targeted tissue and/or of the tissue between the monitoring electrode and the ablation electrode.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: December 12, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc
    Inventors: Reed R. Heimbecher, Saurav Paul, John M. Berns, Jeffrey A. Schweitzer
  • Patent number: 11766205
    Abstract: A method of tracking a position of a catheter within a patient includes securing a navigational reference at a reference location within the patient, defining the reference location as the origin of a coordinate system, determining a location of an electrode moving within the patient relative to that coordinate system, monitoring for a dislodgement of the navigational reference from the initial reference location, for example by measuring the navigational reference relative to a far field reference outside the patient's body, and generating a signal indicating that the navigational reference has dislodged from the reference location. Upon dislodgement, a user may be provided with guidance to help reposition and secure the navigational reference to the initial reference location, or the navigational reference may be automatically repositioned and secured to the initial reference location. Alternatively, a reference adjustment may be calculated to compensate for the changed reference point/origin.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: September 26, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: John A. Hauck
  • Patent number: 11723725
    Abstract: Systems for detecting when catheter electrodes enter into and exit from an introducer are disclosed. In one form, a system detects a relative position of a catheter (comprising a marker band and an electrode) and an introducer (comprising a proximity sensor adapted to sense the marker band), while the catheter and introducer are in a human body. The system may comprise an electronic control unit to analyze signals from the catheter and/or the introducer, to determine whether the catheter electrode is within the introducer; and to disregard data collected from the electrode when that electrode is in the introducer. The sensor may be on the catheter and the sensed element may be on the introducer. The sensed element may comprise one or several marker bands. A marker band may be applied during the manufacture of a medical device or during its use and is any element capable of electromagnetic detection.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: August 15, 2023
    Assignee: ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION INC.
    Inventors: Daniel J. Potter, Lev A. Koyrakh
  • Patent number: 11717356
    Abstract: An obstruction detection system for a robotic catheter system including a robotic catheter manipulator assembly including one or more catheter manipulation bases and one or more sheath manipulation bases. Each manipulation base may be generally linearly movable on one or more tracks relative to the robotic catheter manipulator assembly. The obstruction detection system may include one or more obstruction detection sensors disposed on the track or on the manipulation bases to detect an obstruction along a path of motion of one or more manipulation bases. A software system may be provided for monitoring movement of the catheter and sheath manipulation bases, and/or a status of the obstruction detection sensors.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: August 8, 2023
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Atila Amiri, Kulbir S. Sandhu, Betty Mark, Mark B. Kirschenman
  • Patent number: 11696716
    Abstract: Catheter systems and methods are disclosed. An exemplary catheter includes an outer tubing housing and an inner fluid delivery tubing, the inner fluid delivery tubing having at least one fluid delivery port. The catheter also includes a deployment member movable axially within the inner fluid delivery tubing. A plurality of splines are each connected at a proximal end to the outer tubing and at a distal end to deployment member. A seal is provided between the outer tubing and the inner fluid delivery tubing. A gasket is provided between the deployment member and the inner fluid delivery tubing. Both the seal and the gasket are configured to prevent blood or other fluid from ingressing into the outer tubing.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 11, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Troy T. Tegg, Richard E. Stehr
  • Patent number: 11642060
    Abstract: A system and method for assessing contact between a medical device and tissue may comprise an electronic control unit (ECU) configured to be coupled to a medical device, the medical device comprising a first electrode and a second electrode. The ECU may be further configured to select the first electrode as an electrical source and the second electrode as an electrical sink, to cause an electrical signal to be driven between the source and sink, to detect respective electric potentials on the first electrode and the second electrode while the electrical signal is driven, and to determine an impedance respective of one of the first electrode and the second electrode according to both of the respective electric potentials.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: May 9, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: John A. Hauck
  • Patent number: 11636651
    Abstract: A method of constructing a bounding box comprises: acquiring a set of sensed data points; adding, for each sensed data point, at least one calculated data point; and defining a bounding box containing the sensed and calculated data points. A method of identifying voxels in a voxel grid corresponding to a plurality of data points comprises: calculating, for each data point, a distance between it and each voxel; creating a subset of voxels comprising voxels having a distance from one data point that is less than a predetermined distance; creating another subset comprising those voxels that neighbor a voxel in the first subset; computing, for each voxel in the second subset, a distance between it and each voxel in the first subset; and identifying each voxel in the first subset that is a distance away from each voxel in the second subset that exceeds a predetermined distance.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: April 25, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Carlos Carbonera, Vasily Vylkov, Daniel R. Starks, Jiang Qian, Eric J. Voth
  • Patent number: 11628286
    Abstract: Coupler assemblies and methods are disclosed as the coupler assemblies may be used with a catheter. An exemplary coupler assembly includes a spherical linkage coupler for a catheter. The coupler comprises a first cylinder portion for connecting to a structure, and a second cylinder portion for connecting to a distal end of a body of the catheter. The coupler also comprises a spherical linkage including at least two link arms. Each of the two link arms are connected on one end to the first cylinder portion and on the other end to the second cylinder portion. The two link arms connect a portion of the structure to the distal end of the catheter and enable the structure to move relative to the distal end of the catheter in response to an external force exerted on the structure.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 18, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Arthur G. Erdman, Saurav Paul, Troy T. Tegg
  • Patent number: 11596765
    Abstract: A method of manufacturing a catheter shaft includes extruding an inner polymeric layer having a main lumen and two or more side lumens spaced about the main lumen; forming an outer polymeric layer about the inner polymeric layer; and inserting at least one elongate member, such as a wire, through each side lumen of the inner polymeric layer. The side lumens are less than about ? the size of the main lumen. The method may further include the step of forming a braided layer between the inner polymeric layer and the outer polymeric layer. In an alternate embodiment, the method includes co-extruding an inner polymeric layer and a multi-lumen layer, the multi-lumen layer having two or more side lumens; forming an outer polymeric layer about the multi-lumen layer; and inserting at least one elongate member through each side lumen. Catheter assemblies made according to the described methods are also disclosed.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: March 7, 2023
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Martin Maitre Grasse, James V. Kauphusman
  • Patent number: 11596470
    Abstract: A fluid delivery catheter configured to allow optimal fluid distribution through each electrode by varying the diameter of a catheter lumen is disclosed. Uniform or different fluid flow rates through longitudinally spaced apart elution holes may be achieved. Exemplary fluids for use with the catheter include a cooling fluid, a therapeutic fluid, and a medication.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: March 7, 2023
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Carlo Pappone, Alan de la Rama, Peter Chen, Cary Hata
  • Patent number: 11559658
    Abstract: A lumen extension member is provided for a catheter having a catheter body and an elongate electrode coupled to the catheter body. The elongate electrode defines an electrode lumen extending therethrough. The lumen extension member is positioned within the electrode lumen and is coupled to the catheter body. The lumen extension member includes a tubular member including a sidewall and at least one opening that extends through the sidewall.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: January 24, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Alan de la Rama, Cary Hata, William Du, Yongxing Zhang
  • Patent number: 11559236
    Abstract: An elongate medical device may comprise an elongate tubular body, an electrode, and a trace. The elongate tubular body may comprise a distal end portion and a proximal end portion, the body defining a longitudinal axis. The electrode may comprise electrically-conductive ink extending circumferentially about a portion of the distal end portion. The trace may comprise electrically-conductive ink, electrically coupled with the electrode, extending proximally from the electrode.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: January 24, 2023
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: Mark B. Kirschenman
  • Patent number: 11517372
    Abstract: A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU). The ECU is configured to acquire values for first and second components of a complex impedance between the electrode and the tissue, and to calculate an index responsive to the first and second values. The ECU is further configured to process the ECI to assess lesion formation in the tissue.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: December 6, 2022
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Stephan P. Miller, Don Curtis Deno, Saurav Paul, Liane R. Teplitsky
  • Patent number: 11511076
    Abstract: A method of manufacturing a catheter shaft includes the steps of forming an inner layer of a first polymeric material, forming a plait matrix layer including a second polymeric material about the inner layer, and forming an outer layer of a third polymeric material about the plait matrix layer. The plait matrix layer includes a braided wire mesh partially or fully embedded within the second polymeric material, which is different from at least one of the first polymeric material forming the inner layer and the third polymeric material forming the outer layer. The second polymeric material has a higher yield strain and/or a lower hardness than at least the first polymeric material, and preferably both the first and the third polymeric materials. The first polymeric material and the third polymeric material may be different or the same. The catheter shaft may be formed by stepwise extrusion, co-extrusion, and/or reflow processes.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: November 29, 2022
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Xiaoping Guo, Richard E. Stehr
  • Patent number: 11478300
    Abstract: The present invention pertains to multiple piece irrigated ablation electrode assemblies wherein the irrigation channels are insulated or separated from at least one temperature sensing mechanism within the distal portion of the electrode assembly. The present invention further pertains to methods for improved assembly and accurate measurement and control of the electrode temperatures while effectively irrigating the device and target areas.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: October 25, 2022
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Huisun Wang, Jeremy D. Dando, Dale E. Just, Allen P. Moore
  • Patent number: 11457974
    Abstract: A catheter apparatus includes an elongated body having a distal portion including a distal end, a plurality of flexible segments, and at least one intermediate segment that is less flexible than the flexible segments. Adjacent flexible segments are spaced from each other longitudinally by the at least one intermediate segment. Each of the flexible segments include a sidewall having at least one elongated gap extending at least partially therethrough and forming interlocking members. The at least one intermediate segment is shorter than the flexible segments.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: October 4, 2022
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Alan de la Rama, Cary Hata
  • Patent number: 11419673
    Abstract: The present invention relates to steerable access sheath assembly including at least one electrode. Moreover, the present invention relates to a steerable sheath access device for use in cardiovascular procedures. Embodiments of the present invention including steerable access sheaths or introducers may provide cardiovascular access for various ablation tools and devices for the performance of various ablation procedures or procedures involving alternate energy sources.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: August 23, 2022
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: James V. Kauphusman, Allan M. Fuentes, Troy T. Tegg, Dale E. Just
  • Patent number: 11399889
    Abstract: Ablation electrode assemblies include an inner core member and an outer shell surrounding the inner core member. The inner core member and the outer shell define a space or separation region therebetween. The inner core member is constructed from a thermally insulative material having a reduced thermal conductivity. In an embodiment, the space is a sealed or evacuated region. In other embodiments, irrigation fluid flows within the space. The ablation electrode assembly further includes at least one thermal sensor in some embodiments. Methods for providing irrigation fluid during cardiac ablation of targeted tissue are disclosed that include calculating the energy delivered to irrigation fluid as it flows within the ablation electrode assembly through temperature measurement of the irrigation fluid. Pulsatile flow of irrigation fluid can be utilized in some embodiments of the disclosure.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: August 2, 2022
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Steven C. Christian, Reed R. Heimbecher