Abstract: A method and apparatus for surge prevention control for multistage compressors with at least two stages, at least one flow measuring device, and one overall surge recycle valve is disclosed. Furthermore, a method of accurate calculation of surge limit line for overall multistage compressor using one available flow measuring device is also disclosed. The method of surge prevention calculates multistage compressor's surge limit line as a product of individual stages surge limit lines that differs from those revealed in the prior art. This method allows accurate calculation of the distance of operating point to surge limit line that takes in account surge lines of all stages and allows reliable surge prevention control.
Type:
Grant
Filed:
September 28, 2016
Date of Patent:
April 9, 2019
Assignee:
Statistics & Control, Inc.
Inventors:
Vadim Shapiro, Andriy Nyemchyn, Alex Komm
Abstract: A method and apparatus of coordinated voltage control for electric power systems with at least two substations and at least one load, a method of controlling distribution of reactive power between substations within a power system of similar parameters, and a method of reduction of interaction between voltage control modules in the said power system are disclosed. The purpose of coordinated control is to maintain acceptable voltage with minimal deviation from the set point across all elements of the power system. Disclosed coordinated control is accomplished via each substation's transformers equipped with on load tap changers (OLTC) and electrical generators Automatic Voltage Regulators (AVR) using proportional-integral-derivative control embedded in coordinated master controllers.
Abstract: A system for controlling voltage for an electric power system comprising: at least two substations and at least one load using voltage control devices, with one voltage control module required for each substation with appropriate control elements for OLTC equipped transformers or turbo generator's automatic voltage regulators. Utilizing the system, methods of the like have the purpose of controlling the distribution of reactive power to minimize power losses, maintain each busbar voltage in accordance to selected set point, maintain active and reactive power reserves, and minimizing the reactive power drawn from the transmission system.
Abstract: A means to effect a trip response regardless of the electro-mechanical actuator type used for improving electro-hydraulic and electro-mechanical integrated control systems for a steam turbine. To achieve this goal, electro-mechanical actuators can be equipped with multiple coils or multiple motors (usually a primary and a secondary). In a dual-coil configuration, the primary is energized according to an output of a PID controller, whereas the secondary coil is regulated by a separate control element. The entire system is powered by means of Uninterruptable Power Supply (UPS) with AC output which can provide sufficient time for trip response using primary coil or motor. At the same time, secondary coil or motor is powered by independent power from a UPS and/or separate battery backup. Whenever trip response is required, and there is a complete main power interruption secondary coil or motor is quickly energized to provide adequate trip response.
Abstract: This invention provides a system and method of Advanced Process Control for optimal operation of multi-unit plants in large scale processing and power generation industries. The invention framework includes the following components: continuous real time dynamic process simulation, automatic coefficient adjustment of dynamic and static process models, automatic construction of transfer functions, determination of globally optimal operating point specific to current conditions, provision of additional optimal operating scenarios through a variety of unit combinations, and calculation of operational forecasts in accordance with planned production.
Abstract: A means to effect a trip response regardless of the electro-mechanical actuator type used for improving electro-hydraulic and electro-mechanical integrated control systems for a steam turbine. To achieve this goal, electro-mechanical actuators can be equipped with multiple coils or multiple motors (usually a primary and a secondary). In a dual-coil configuration, the primary is energized according to an output of a PID controller, whereas the secondary coil is regulated by a separate control element. The entire system is powered by means of Uninterruptable Power Supply (UPS) with AC output which can provide sufficient time for trip response using primary coil or motor. At the same time, secondary coil or motor is powered by independent power from a UPS and/or separate battery backup. Whenever trip response is required, and there is a complete main power interruption secondary coil or motor is quickly energized to provide adequate trip response.
Abstract: This invention provides a system and method of Advanced Process Control for optimal operation of multi-unit plants in large scale processing and power generation industries. The invention framework includes the following components: continuous real time dynamic process simulation, automatic coefficient adjustment of dynamic and static process models, automatic construction of transfer functions, determination of globally optimal operating point specific to current conditions, provision of additional optimal operating scenarios through a variety of unit combinations, and calculation of operational forecasts in accordance with planned production.