Abstract: The proposed group of inventions relates to methods for depositing fluorescent coatings on screens, by which an image is detected and/or converted, in particular, to methods of forming a structured scintillator on the surface of a photodetector intended for the detection of X-ray or gamma radiation, hereinafter referred to as the detected radiation, and to devices for obtaining an X-ray image, or an image obtained by detection of gamma radiation, particularly to devices for X-ray mammography and tomosynthesis. A method for forming a structured scintillator on the surface of a pixelated photodetector, wherein according to embodiment 1, at least one structural element is formed directly on the surface of the photodetector, the material of which is deposited by using a two-axis or a three-axis means for discrete deposition of liquid or heterogeneous substances.
Type:
Grant
Filed:
April 28, 2014
Date of Patent:
October 23, 2018
Assignee:
“STC-MT” LLC
Inventors:
Dmitry Aleksandrovich Suponnikov, Andrei Nikolaevich Putilin, Anatoliy Rudolfovich Dabagov
Abstract: The invention relates to X-ray imaging devices, particularly to devices for X-ray mammography and tomosynthesis. The scintillation detector comprises at least one photosensor with an array of cells each of thereof has a photosensitive area, and a scintillator arranged in the form of a structured aggregate made of elements isolated from each other and placed on the surface of the photosensor. The new construction of the proposed scintillation detector is the completely eliminated need for precise alignment of the structured scintillator based on the elements with a matrix of cells of a photosensor. Precise arrangement of the scintillation elements and the matrix of cells of a photosensor is performed directly during the formation of the scintillation elements. The technical result achieved by using the invention is the increase of image contrast.
Abstract: The invention relates to X-ray imaging devices, particularly to devices for X-ray mammography and tomosynthesis. The scintillation detector comprises at least one photosensor with an array of cells each of thereof has a photosensitive area, and a scintillator arranged in the form of a structured aggregate made of elements isolated from each other and placed on the surface of the photosensor. The new construction of the proposed scintillation detector is the completely eliminated need for precise alignment of the structured scintillator based on the elements with a matrix of cells of a photosensor. Precise arrangement of the scintillation elements and the matrix of cells of a photosensor is performed directly during the formation of the scintillation elements. The technical result achieved by using the invention is the increase of image contrast.