Patents Assigned to Steag RTP Systems, Inc.
  • Patent number: 6514876
    Abstract: A process for forming silicate glass layers on substrates is disclosed. A silicate glass layer is first deposited onto a substrate, such as a semiconductor wafer. The wafer is then placed in a thermal processing chamber and heated in the presence of a reactive gas. The object is heated to a temperature sufficient for reflow of the silicate glass. In one embodiment, the atmosphere contained within the processing chamber comprises steam in combination with a reactive gas. The reactive gas can be, for instance, hydrogen, oxygen, nitrogen, dinitrogen oxide, ozone, hydrogen peroxide, atomic and/or molecular hydrogen, or radicals or mixtures thereof.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: February 4, 2003
    Assignee: Steag RTP Systems, Inc.
    Inventors: Randhir P. S. Thakur, John H. Das, Dave Clarke
  • Patent number: 6359263
    Abstract: A system and process is disclosed for rapidly heating semiconductor wafers coated with a highly reflective material on either the whole wafer or in a patterned area. The wafers are heated in a thermal processing chamber by a plurality of lamps. In order for the wafer coated with the highly reflective material to more rapidly increase in temperature with lower power intensity, a shield member is placed in between the wafer and the plurality of lamps. The shield member is made from a high emissivity material, such as ceramic, that increases in temperature when exposed to light energy. Once heated, the shield member then in turn heats the semiconductor wafer with higher uniformity. In one embodiment, the shield member can also be used to determine the temperature of the wafer as it is heated.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: March 19, 2002
    Assignee: Steag RTP Systems, Inc.
    Inventors: Sing Pin Tay, Yao Zhi Hu, Randhir P. S. Thakur, Arnon Gat
  • Patent number: 6293696
    Abstract: A method and system for calibrating radiation sensing devices, such as pyrometers, in thermal processing chambers are disclosed. The system includes a reflective device positioned opposite the radiation sensing devices and a calibrating light source which emits light energy onto the reflective device. The system is designed so that each radiation sensing device is exposed to the same intensity of light being reflected off the reflective device, which has a preset value. The radiation sensing devices are then used to measure the amount of light energy being reflected which is then compared to the preset value for making any necessary adjustments.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: September 25, 2001
    Assignee: Steag RTP Systems, Inc.
    Inventor: Julio L. Guardado
  • Patent number: 6281141
    Abstract: A process for producing thin dielectric films is disclosed. In particular, the process is directed to forming oxide films having a thickness of less than about 60 angstroms. The oxide films can be doped with an element, such as nitrogen or boron. For example, in one embodiment, an oxynitride coating can be formed on a semiconductor wafer. According to the present invention, the very thin coatings are formed by reacting a gas with a semiconductor wafer while the temperature of the wafer is being increased in a rapid thermal processing chamber to a maximum temperature. According to the process, primarily all of the coating is formed during the “ramp up” portion of the heating cycle. Consequently, the wafer is maintained at the maximum target temperature for a very short period of time.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: August 28, 2001
    Assignee: Steag RTP Systems, Inc.
    Inventors: John H. Das, Randhir P. S. Thakur
  • Patent number: 6221766
    Abstract: The method and apparatus for heat treating and etching refractory metal and silicides of the refractory metal include integrated multi-chamber, multi-processing of substrates to react refractory metal and exposed silicon in self-aligned silicidation operations. Unreacted refractory metal on silicon oxide regions is selectively etched away distinctively from reacted silicide to yield highly precise self-aligned regions of silicide. Subsequent heat treatment at elevated temperatures reduces the sheet resistance of the silicide to yield highly conductive regions that are conducive to formation of conductor lines less than 0.25 &mgr;m wide.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: April 24, 2001
    Assignee: STEAG RTP Systems, Inc.
    Inventor: Yuval Wasserman
  • Patent number: 6210484
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the present invention is directed to a heating device that contains at least one heating cone. The heating cone of the present invention includes a circular reflector that can be conically-shaped. A plurality of light energy sources are contained within the reflector. The light energy sources can be vertically oriented or can be tilted slightly towards the central axis of the heating cone. In this arrangement, it has been discovered that the heating cone produces a uniform irradiance distribution over a wafer being heated.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: April 3, 2001
    Assignee: Steag RTP Systems, Inc.
    Inventor: Kevin Hathaway
  • Patent number: 6204484
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. In accordance with the present invention, the apparatus includes a temperature measuring system for determining the temperature of semiconductor wafers being heated within the apparatus. The temperature measurement system includes a shield member made from, for instance, ceramic which is placed adjacent to the semiconductor wafer being heated. A temperature measuring device, such as a thermocouple, is placed in association with the shield member. As the wafer is heated, the temperature of the shield member is monitored. Based on a predetermined calibration curve, by knowing the temperature of the shield member, the temperature of the semiconductor wafer can be estimated with reasonable accuracy.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: March 20, 2001
    Assignee: Steag RTP Systems, Inc.
    Inventors: Sing Pin Tay, Yao Zhi Hu
  • Patent number: 6200023
    Abstract: A system and method for determining the temperature of substrates in a thermal processing chamber in the presence of either an oxidizing atmosphere or a reducing atmosphere is disclosed. Specifically, temperature determinations made in accordance with the present invention are generally for calibrating other temperature sensing devices that may be used in conjunction with the thermal processing chamber. The method of the present invention is generally directed to heating a substrate containing a reactive coating within a thermal processing chamber in an oxidizing atmosphere or reducing atmosphere. As the wafer is heated, the reactive coating reacts with gases contained within the chamber based upon the temperature to which the substrate is exposed. After heated, the thickness of any coating that is formed on the substrate is then measured for determining the temperature to which the substrate was heated.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: March 13, 2001
    Assignee: Steag RTP Systems, Inc.
    Inventors: Sing Pin Tay, Yao Zhi Hu, Randhir P. S. Thakur
  • Patent number: 6174651
    Abstract: The present invention is generally directed to a process and a system for forming photoresist coatings on a semiconductor wafer. In particular, according to the present invention, a solution containing a photoresist material is atomized in a reaction vessel and directed towards a semiconductor wafer. The semiconductor wafer can be preheated. The atomized liquid is heated, such as by being exposed to light energy which causes the photoresist material to form a coating on the substrate.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: January 16, 2001
    Assignee: Steag RTP Systems, Inc.
    Inventor: Randhir P. S. Thakur
  • Patent number: 6160242
    Abstract: An apparatus and method for determining the temperature of a semiconductor wafer in a thermal processing chamber in the presence of a radiation absorbing gas, such as a vapor, is disclosed. The apparatus includes a temperature sensing device which senses the amount of electromagnetic radiation being emitted by a wafer being heated and a gas sensing device which senses the amount of a gas present within the chamber. The system further includes a controller which is placed in communication with the temperature sensing device and the gas sensing device. The controller is configured to determine a correction factor based upon the amount of gas contained within the chamber. The correction factor in combination with information received from the temperature sensing device are then used to determine the temperature of the wafer.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: December 12, 2000
    Assignee: Steag RTP Systems, Inc.
    Inventor: Julio Guardado
  • Patent number: 6075922
    Abstract: A process and system for preventing gases from either leaking into or out of a thermal processing chamber that is designed to operate at or near atmospheric pressure is disclosed. For instance, in one embodiment, gases are prevented from leaking into a thermal processing chamber by maintaining the pressure within the chamber at levels that are slightly greater than atmospheric pressure. In an alternative embodiment, in order to prevent gases from leaking out of the chamber, the pressure within the chamber is maintained at levels slightly less than atmospheric pressure. During operation of the thermal processing chamber, a gas is continuously circulated through the chamber. In order to carry out the process of the present invention, a pressure control device can be placed upon the gas outlet for maintaining the pressure within the chamber within a desired range.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: June 13, 2000
    Assignee: Steag RTP Systems, Inc.
    Inventors: Sing Pin Tay, Yao Zhi Hu, Yuval Wasserman
  • Patent number: 6056434
    Abstract: The present invention is generally directed to a system and process for accurately determining the temperature of an object, such as a semiconductive wafer, by sensing and measuring the object radiation being emitted at a particular wavelength. In particular, a reflective device is placed adjacent to the radiating object, which causes thermal radiation being emitted by the wafer to be reflected multiple times. The reflected thermal radiation is then monitored using a light detector. Additionally, a reflectometer is contained within the system which independently measures the reflectivity of the object. The temperature of the object is then calculated using not only the thermal radiation information but also the information received from the reflectometer.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: May 2, 2000
    Assignee: Steag RTP Systems, Inc.
    Inventor: Robert J. Champetier
  • Patent number: 6027244
    Abstract: The present invention is generally directed to a system and process for accurately determining the temperature of an object, such as a semi-conductive wafer, by sampling from the object radiation being emitted at a particular wavelength. In one embodiment, a single reflective device is placed adjacent to the radiating object. The reflective device includes areas of high reflectivity and areas of low reflectivity. The radiation being emitted by the object is sampled within both locations generating two different sets of radiation measurements. The measurements are then analyzed and a correction factor is computed based on the optical characteristics of the reflective device and the optical characteristics of the wafer. The correction factor is then used to more accurately determine the temperature of the wafer. In an alternative embodiment, if the radiating body is semi-transparent, a reflective device is placed on each side of the object, which compensates for the transparency of the object.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: February 22, 2000
    Assignee: Steag RTP Systems, Inc.
    Inventors: Robert J. Champetier, David Egozi
  • Patent number: 5997175
    Abstract: The present invention is generally directed to a system and process for accurately determining the temperature of an object, such as a semi-conductive wafer, by sampling from the object radiation being emitted at a particular wavelength. In one embodiment, a single reflective device is placed adjacent to the radiating object. The reflective device includes areas of high reflectivity and areas of low reflectivity. The radiation being emitted by the object is sampled within both locations generating two different sets of radiation measurements. The measurements are then analyzed and a correction factor is computed based on the optical characteristics of the reflective device and the optical characteristics of the wafer. The correction factor is then used to more accurately determine the temperature of the wafer. In an alternative embodiment, if the radiating body is semi-transparent, a reflective device is placed on each side of the object, which compensates for the transparency of the object.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: December 7, 1999
    Assignee: Steag RTP Systems, Inc.
    Inventors: Robert J. Champetier, David Egozi
  • Patent number: 5980637
    Abstract: The present invention is generally directed to a process and a system for transforming a liquid into a solid material using light energy. In particular, a solution containing a parent material in a liquid form is atomized in a reaction vessel and directed towards a substrate. The atomized liquid is exposed to light energy which causes the parent material to form a solid coating on a substrate. The light energy can be provided from one or more lamps and preferably includes ultraviolet light. Although the process of the present invention is well suited for use in many different and various applications, one exemplary application is in depositing a dielectric material on a substrate to be used in the manufacture of integrated circuit chips.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: November 9, 1999
    Assignee: Steag RTP Systems, Inc.
    Inventors: Rajendra Singh, Rahul Sharangpani
  • Patent number: D416167
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: November 9, 1999
    Assignee: Steag RTP Systems, Inc.
    Inventor: Mario John Barker