Abstract: This disclosure involves aerial robots that dispenses conductive filament or systems, methods, and software for support such aerial robots. One remotely powered aerial robot system includes an aerial robot and a power source. The aerial robot comprises a body, a first propeller coupled to the body and operable to provide thrust to the aerial robot, a rotatable spool coupled to the body, and a conductive filament that is dispensed from the spool by rotation of the spool is one direction and retrieved by rotation of the spool in another direction. The power source is coupled with, and remote from, the aerial robot via the conductive filament, where the conductive filament is operable to power the first propeller using power from the power source.
Type:
Grant
Filed:
April 19, 2007
Date of Patent:
December 15, 2009
Assignee:
Stealth Robotics, LLC
Inventors:
Samuel Alan Johnson, William Dennis Burkard, Robert H. Mimlitch, III, Robert Henry Mimlitch, Jr., David Anthony Norman
Abstract: An aerial robot is disclosed. The aerial robot may include at least one pair of counter-rotating blades or propellers, which may be contained within a circumferential shroud or a duct. In one embodiment, the aerial robot may have the ability to hover and move indefinitely. Electric power to the robot may be provided by a tether or an on-board power supply. In tethered embodiments, a solid-state, electronic voltage transformer may be used to reduce a high voltage, low current source to lower voltage, higher current source. In one embodiment, secure data communication between a ground unit and the aerial robot is facilitated by impressing high bandwidth serial data onto the high voltage tether wires or a thin optical fiber which is co-aligned with the tether wires. In one embodiment, precise navigational and position controls, even under extreme wind loads, are facilitated by an on-board GPS unit and optical digital signal processors.