Patents Assigned to Stevens Institute of Technology
  • Patent number: 11857921
    Abstract: Process and apparatus (10) are disclosed for capturing and converting an ozone-depleting alkyl halide fumigant from a fumigant/air mixed stream (14) by absorbing it into a metal hydroxide-alcohol buffer solution (26) in an absorber/scrubber (12) to produce a fumigant-free air stream (28). The captured alkyl halide in aqueous alcohol solution can actively react with the metal hydroxide in alcohol solution to produce a value-added product, such as a precipitate metal halide, and another alcohol that further enhances absorption. The absorbing solution is well-mixed with make-up alcohol and alkali streams to maintain the concentration of the metal hydroxide in the desired buffer solution range. The solid precipitate metal halide (52) is separated from the liquid stream, and the metal hydroxide-containing mixed alcohol stream (26) is recycled to the absorber/scrubber (12).
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: January 2, 2024
    Assignee: The Trustees of The Stevens Institute of Technology
    Inventors: Adeniyi Lawal, Lin Zhou
  • Publication number: 20230302199
    Abstract: In accordance with the method of the present invention, 3D tissue-derived scaffolding materials are made in various formats, including but not limited to hydrogel, sponge, fibers, microspheres, and films, all of which function to better preserve natural extracellular matrix molecules and to mimic the natural tissue environment, thereby effectively guiding tissue regeneration. The method involves incorporating a homogenized tissue-derived suspension into a polymeric solution of synthetic, natural, or hybrid polymers to prepare tissue-derived scaffolds in the aforementioned formats. Such tissue-derived scaffolds and scaffolding materials have a variety of utilities, including: the creation of 3D tissue models such as skin, bone, liver, pancreas, lung, and so on; facilitation of studies on cell-matrix interactions; and the fabrication of implantable scaffolding materials for guided tissue formation in vivo.
    Type: Application
    Filed: March 3, 2023
    Publication date: September 28, 2023
    Applicant: The Trustees of The Stevens Institute of Technology
    Inventors: Hongjun Wang, Meng Xu, Deep Parikh, Jin Zou, Weiwei Wang
  • Publication number: 20230293179
    Abstract: The present invention relates generally to the manufacture of conductive scaffolds of micro and/or nanofibers with the help of different printing techniques (e.g., near-field electrostatic printing, inkjet printing), such scaffolds enabling the formation of two-dimensional (2D) or three-dimensional (3D) neural networks to mimic the native counterparts. Applications of such patterned conductive scaffolds include, but are not limited to, an engineered conduit for guiding the differentiation and outgrowth of neural cells in peripheral nerve damage or in large-volume spinal cord injury under the electrical stimulation. Meanwhile, the scaffolds could also locally deliver various biomolecules in conjunction with electrical stimulation for facilitated nervous system regeneration (FIG. 1).
    Type: Application
    Filed: August 6, 2021
    Publication date: September 21, 2023
    Applicant: The Trustees of The Stevens Institute of Technology
    Inventors: Hongjun Wang, Haoyu Wang, Juan Wang
  • Patent number: 11711209
    Abstract: The present invention relates to methods for secure computation and/or communication. Entangled photons (118) are generated such that each participating party receives a series of optical pulses. Each party has private information (110, 112) which are never transmitted through public or private communication channels. Instead, each party converts their respective private information (110, 112) into measurement bases via an encryption process (114, 116) which are then applied to the entangled photons (118). After the measurement process, e.g., quantum frequency conversion (122, 124), reference indices are announced (124, 126) so that computation can be performed (128) without revealing the private information directly or indirectly.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: July 25, 2023
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventors: Yuping Huang, Lac Thi Thanh Nguyen
  • Publication number: 20230172466
    Abstract: The present disclosure describes a technology for contactless cardiopulmonary system monitoring, and more specifically, to the embodiment of exemplary system and method for detecting torso movements and estimating respiratory and heart rates. This invention leverages a depth sensor-equipped camera system to determine the human's anatomical landmarks. The estimated coordinates guide an FMCW radar to enhance the signal quality in the direction of the subject through a beam-steering technique, and extract the movements corresponding to the cardiopulmonary system. The movements are used to estimate respiratory and heart rates in a processing unit.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 8, 2023
    Applicants: Autonomous Healthcare Inc., Stevens Institute of Technology
    Inventors: Behnood Gholami, Negar Tavassolian, Arash Shokouhmand
  • Patent number: 11612676
    Abstract: 3D native tissue-derived scaffolding materials are made in various formats, including but not limited to hydrogel, sponge, fibers, microspheres, and films, all of which function to better preserve natural extracellular matrix molecules and to recapitulate the natural tissue environment, thereby effectively guiding tissue regeneration. Tissue-derived scaffolds are prepared by incorporating a homogenized tissue-derived suspension into a polymeric solution of synthetic, natural, or hybrid polymers. Such tissue-derived scaffolds and scaffolding materials have a variety of utilities, including: the creation of 3D tissue models such as skin, bone, liver, pancreas, lung, and so on; facilitation of studies on cell-matrix interactions; and the fabrication of implantable scaffolding materials for guided tissue formation in vivo.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: March 28, 2023
    Assignee: The Trustees of The Stevens Institute of Technology
    Inventors: Hongjun Wang, Meng Xu, Deep Parikh, Jin Zou, Weiwei Wang
  • Patent number: 11529519
    Abstract: A method of localizing brain regions for the purpose of guiding placement of electrodes and related implants is disclosed. The inventive method involves effecting a pulse in a patient's brain, temporally aligning readings taken from an electrode at various depths, measuring local field potentials at each depth during interstimulus intervals, performing a coherence analysis comparing the local field potential measurements of the different depths, and determining a corresponding brain region for the depths compared.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: December 20, 2022
    Assignee: The Trustees of The Stevens Institute of Technology
    Inventors: George McConnell, Hanyan Li
  • Patent number: 11420158
    Abstract: Process and apparatus are disclosed for capturing and converting an ozone-depleting alkyl halide fumigant from a fumigant/air mixed stream (14) by absorbing it into a metal hydroxide-alcohol buffer solution (26) in an absorber/scrubber (12) to produce a fumigant-free air stream. The captured alkyl halide in aqueous alcohol solution can actively react with the metal hydroxide in alcohol solution to produce a value-added product, such as a precipitate metal halide, and another alcohol that further enhances absorption. The absorbing solution is well-mixed with make-up alcohol and alkali streams to maintain the concentration of the metal hydroxide in the desired buffer solution range. The solid precipitate metal halide is separated from the liquid stream, and the metal hydroxide-containing mixed alcohol stream is recycled to the absorber/scrubber (12).
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: August 23, 2022
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventors: Adeniyi Lawal, Lin Zhou
  • Patent number: 10935379
    Abstract: The present disclosure relates to a generally-applicable measurement technique based on coherent quantum enhancement effects and provides embodiments with nonlinear optics. The technique utilizes parametric nonlinear processes where the information-carrying electromagnetic quanta in a number of electromagnetic modes are converted phase coherently to signature quanta in a single mode or a few modes. The phase coherence means that while the quanta before conversion may have unequal or uncertain phase values across the modes, the signature quanta converted from those different modes have the (near) uniform phase. This can lead to significant increase in the signal to noise ratio in detecting weak signal buried in strong background noise. Applications can be found in remote sensing, ranging, biological imaging, field imaging, target detection and identification, covert communications, and other fields that can benefit from improved signal to noise ratios by using the phase coherent effect.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: March 2, 2021
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventor: Yuping Huang
  • Patent number: 10847807
    Abstract: Flexible air-breathing microscale fuel cells are produced using ion exchange polymer membranes without silicon substrates or other rigid components. The microscale fuel cells provide long-life energy supply sources in portable electronics due to reduced volume, high energy density, and low cost. More particularly, the microscale fuel cell has a direct hydrogen flow-through porous anode electrode with a pair of air-breathing cathodes.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: November 24, 2020
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventors: Ronald Besser, Seyed Reza Mahmoodi
  • Publication number: 20200354884
    Abstract: Functionalized fibers adapted to remove contaminants from water and soil are produced in accordance with a single-step process that involves treating an acrylic fiber with an amination reagent to form a functionalized acrylic amino fiber. By way of another single-step process, functionalized acrylic amino fibers are treated with an alkylating reagent to form functionalized acrylic quaternary amino fibers.
    Type: Application
    Filed: May 7, 2020
    Publication date: November 12, 2020
    Applicant: The Trustees of the Stevens Institute of Technology
    Inventors: Xiaoguang Meng, Jinshan Wei
  • Publication number: 20200316556
    Abstract: Filter media for treating contaminated water is produced from aluminum-based water treatment residuals (Al-WTR) commonly produced as a byproduct of water treatment plants. By processing the residuals into small granules, a superior green sorbent product is obtained with the functionality to adsorb contaminants, such as metals and certain nutrients in water. Biopolymers can be incorporated into the filter media to further enhance functionality and hydraulic characters.
    Type: Application
    Filed: April 3, 2020
    Publication date: October 8, 2020
    Applicant: The Trustees of the Stevens Institute of Technology
    Inventors: Dibyendu Sarkar, Viravid Na Nagara, Rupali Datta
  • Publication number: 20200181551
    Abstract: The described invention provides an ex vivo dynamic multiple myeloma cancer niche contained in a pumpless perfusion culture device. The dynamic multiple myeloma cancer niche includes (a) a three-dimensional tissue construct containing a dynamic ex vivo bone marrow niche, which contains a mineralized bone-like tissue containing viable osteoblasts self-organized into cohesive multiple cell layers and an extracellular matrix secreted by the viable adherent osteoblasts; and a microenvironment dynamically perfused by nutrients and dissolved gas molecules; and (b) human myeloma cells seeded from a biospecimen composition comprising mononuclear cells and the multiple myeloma cells. The human myeloma cells are in contact with osteoblasts of the bone marrow niche, and the viability of the human myeloma cells is maintained by the multiple myeloma cancer niche.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 11, 2020
    Applicants: Hackensack Meridian Health Center For Discovery and Innovation, The Trustees of the Stevens Institute of Technology
    Inventors: Woo LEE, Zhehuan CHEN, Jenny ZILBERBERG
  • Patent number: 10631987
    Abstract: A bone repair scaffold having two moduli that match those of the cancellous and cortical bone in a patient receiving a bone graft/implant. The bone repair scaffold possesses increased mechanical properties to sustain physiological loading and biologically active capability to facilitate bone fusion. The bone repair scaffold may be 3D-printed, which allows for a variety of scaffold designs and configurations. Pore size, interconnected porosity, shape, and modulus of the bone repair scaffold may be modified for different bone graft applications, whether it is used as filler for bone cancer resections or trauma, or as a fusion device in cases of surgery. Depending on the defect location of the bone shaft, the relative porosity of the scaffold may be modified to account for changes in cortical bone thickness. A method for treating a bone defect using the bone repair scaffold is also disclosed.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: April 28, 2020
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventors: Rebecca Chung, Antonio Valdevit, Dilhan Kalyon
  • Patent number: 10623519
    Abstract: A system includes a device that is disposed within an environment and is adapted to communicate over a radio frequency communication link. The system also includes a wireless access point disposed within the environment, including a wireless transceiver in communication with the device over a radio frequency communication link using a plurality of channels, and recording a channel state information data set for the radio frequency communication link. The system also includes a monitoring device including a memory storing a plurality of activity profiles, each of which includes an activity and a channel state information profile corresponding to the activity, and a processor receiving, from the wireless access point, the channel state information data set and determining, based on a comparison of the channel state information data set to the channel state information profile of each of the plurality of activity profiles, the activity of the person in the environment.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: April 14, 2020
    Assignees: The Trustees of the Stevens Institute of Technology, Rutgers, The State University of New Jersey
    Inventors: Yingying Chen, Jie Yang, Yan Wang, Jian Liu, Marco Gruteser
  • Patent number: 10574592
    Abstract: The present disclosure relates to Compute-Communicate Continuum (“CCC”) technology, which challenges today's use model of Computing and Communications as independent but interfacing entities. CCC technology conflates computing and communications to create a new breed of device. Compute-Communicate Continuum metal algorithms allow a software programmer to compile/link/load and run his software application directly on device hardware providing Super Computing and Extreme Low Latency links for demanding financial applications and other applications. CCC based multiple CCC-DEVICE hardware platforms can be interconnected using its ELL “Metal Shared Memory Interconnects” form what looks like a “single” machine that crosses different geographies, asset classes, and trading venues.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: February 25, 2020
    Assignees: The Trustees of the Stevens Institute of Technology, CCC Technology Holdings, LLC
    Inventors: Solomon Harsha, Khaldoun Khashanah
  • Publication number: 20200046808
    Abstract: In permeability lung edema, cardiogenic lung edema or neonatal respiratory distress, there is heterogeneous liquid distribution throughout the lungs. The excess alveolar liquid reduces gas exchange. Mechanical ventilation is used to improve gas exchange. In the presence of heterogeneous liquid distribution, there are surface tension-dependent stress concentrations in septa separating aerated from flooded alveoli. Mechanical ventilation, by inflating the lung above normal volumes, thus increasing surface tension above normal, exacerbates the stress concentrations and consequently injures, or exacerbates pre-existing injury of, the alveolar-capillary barrier. Any means of lowering surface tension should lessen ventilation injury of the lung. In the present invention, dilute exogenous surfactant solution or surfactant protein C solution interacts with albumin to lower surface tension, likely through effective promotion of surfactant lipid adsorption.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 13, 2020
    Applicant: The Trustees of the Stevens Institute of Technology
    Inventor: Carrie E. Perlman
  • Patent number: 10535974
    Abstract: Disclosed is a system and method for remote sensing, surface profiling, object identification, and aiming based on two-photon population inversion and subsequent photon backscattering enhanced by superradiance using two co-propagating pump waves. The present disclosure enables efficient and highly-directional photon backscattering by generating the pump waves in properly pulsed time-frequency modes, proper spatial modes, with proper group-velocity difference in air. The pump waves are relatively delayed in a tunable pulse delay device and launched to free space along a desirable direction using a laser-pointing device. When the pump waves overlap in air, signal photons will be created through two-photon driven superrdiant backscattering if target gas molecules are present. The backscattered signal photons propagate back, picked using optical filters, and detected.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: January 14, 2020
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventor: Yuping Huang
  • Publication number: 20190328393
    Abstract: A nerve guidance conduit includes one or more guidance channels formed as porous polymeric structures. The guidance channels are within an outer tubular structure that includes randomly-oriented nanofibers. The guidance channels may have electrospun nanofibers on their inner and outer surfaces in a parallel alignment with the guidance channels. Such aligned nanofibers may also be present on the inner surface of the outer tubular structure. The outer surfaces of the guidance channels and the inner surface of the tubular structure define additional guidance channels. Such a nerve guidance conduit provides augmented surface areas for providing directional guidance and enhancing peripheral nerve regeneration. The structure also has the mechanical and nutrient transport requirements required over long regeneration periods.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 31, 2019
    Applicant: The Trustees of the Stevens Institute of Technology
    Inventors: Xiaojun Yu, Munish B. Shah, Wei Chang
  • Patent number: 10391151
    Abstract: In permeability lung edema, cardiogenic lung edema or neonatal respiratory distress, there is heterogeneous liquid distribution throughout the lungs. The excess alveolar liquid reduces gas exchange. Mechanical ventilation is used to improve gas exchange. In the presence of heterogeneous liquid distribution, there are surface tension-dependent stress concentrations in septa separating aerated from flooded alveoli. Mechanical ventilation, by inflating the lung above normal volumes, thus increasing surface tension above normal, exacerbates the stress concentrations and consequently injures, or exacerbates pre-existing injury of, the alveolar-capillary barrier. Any means of lowering surface tension should lessen ventilation injury of the lung. In the present invention, dilute exogenous surfactant solution or surfactant protein C solution interacts with albumin to lower surface tension, likely through effective promotion of surfactant lipid adsorption.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: August 27, 2019
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventor: Carrie E. Perlman