Abstract: A light projection system includes a MEMS mirror operating on a mirror drive signal to generate a mirror sense signal resulting from operation of the MEMS mirror based on the mirror drive signal. A mirror driver generates the mirror drive signal from a drive control signal. A controller receives the mirror sense signal from the MEMS mirror, obtains a first sample of the mirror sense signal at a first phase thereof, obtains a second sample of the mirror sense signal at a second phase thereof, wherein the first and second phases are separated by a half period of the mirror drive signal, with the second phase occurring after the first phase, and generates the drive control signal based on a difference between the first and second samples to keep the mirror drive signal separated in phase from the mirror sense signal by a desired amount of phase separation.
Abstract: A MOS transistor, in particular a vertical channel transistor, includes a semiconductor body housing a body region, a source region, a drain electrode and gate electrodes. The gate electrodes extend in corresponding recesses which are symmetrical with respect to an axis of symmetry of the semiconductor body. The transistor also has spacers which are also symmetrical with respect to the axis of symmetry. A source electrode extends in electrical contact with the source region at a surface portion of the semiconductor body surrounded by the spacers and is in particular adjacent to the spacers. During manufacture the spacers are used to form in an auto-aligning way the source electrode which is symmetrical with respect to the axis of symmetry and equidistant from the gate electrodes.
Abstract: The present disclosure is directed to a method for storing information in a coded manner in non-volatile memory cells. The method includes providing a group of non-volatile memory cells of non volatile memory. The memory cell is of the type in which a stored logic state, which can be logic high or logic low, can be changed through application of a current to the cell and the state in the memory cell is read by reading a current provided by the cell. The group of non-volatile memory cells include a determined number of non-volatile memory cells which is greater than two. The group of non-volatile memory cells store a codeword formed by the values of said stored states of the cells of the group taken according to a given order. Given a set of codewords obtainable by the stored values in the determined number of non-volatile memory cells in a group, the method includes storing the information in at least two subsets of said set of codewords comprising each at least a codeword.
Type:
Application
Filed:
December 29, 2022
Publication date:
July 13, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Alessandro TOMASONI, Fabio Enrico Carlo DISEGNI, Marcella CARISSIMI, Daniele LO IACONO
Abstract: Display elements, each having anode and cathode terminals, are arranged into rows and columns. Each row has an anode-line coupled to the anode terminals for its display elements. Each column has a cathode-line coupled to the cathode terminals for its display elements. A switch for each anode-line selectively couples that anode-line to a storage capacitor, and a switch for each cathode-line selectively couples that cathode-line to the storage capacitor. A display driver activates the row driver for a given row and the column driver for a given column. A switch driver closes the switch for the cathode-line for the given column, then opens the switch for that cathode-line. The display driver deactivates the row driver for the given row, after closing the switch for the cathode-line for the given column. The switch driver closes the switch for the anode-line for the given row.
Abstract: A non-emissive display includes a backlight controller sending a pulse during each sub-frame of a plurality of frames to row and column drivers that drive backlight zones. The row drivers count each pulse to keep a pulse count total, and reset the pulse count total when it is equal to a first number indicating how many row drivers are present. Each row driver activates its channels and waits for a next pulse if the pulse count total is not equal to the first number and if the pulse count total is equal to a second number indicating in which sub-frame that first driver is to be activated. Each row driver waits for a next pulse if the pulse count total is not equal to the first number and the second number. Each column driver activates its channel in response to receipt of each pulse.
Type:
Application
Filed:
March 10, 2023
Publication date:
July 13, 2023
Applicant:
STMicroelectronics S.r.l.
Inventors:
Gaetano L'EPISCOPO, Giovanni CONTI, Carmelo OCCHIPINTI, Mario Antonio ALEO
Abstract: The present disclosure is directed to a diode with a semiconductor body of silicon including a cathode region, which has a first conductivity type and is delimited by a front surface; and an anode region, which has a second conductivity type and extends into the cathode region from the front surface. The diode further includes a barrier region of cobalt disilicide, arranged on the anode region; and a metallization region of aluminum or of an aluminum alloy, arranged on the barrier region. The barrier region contacts the anode region.
Abstract: A method of operating a PMUT electro-acoustical transducer, the method comprising: applying over an excitation interval to the transducer an excitation signal which is configured to emit corresponding ultrasound pulses towards a surrounding space, acquiring at a receiver reflected ultrasound pulses as reflected in said surrounding space, generating a reference echo signal, performing a cross-correlation of said acquired received ultrasound pulses with said reference echo signal, performing a measurement based on the cross-correlation results, in particular a measurement of the time of flight of the ultrasound pulses, wherein said reference echo is obtained by finding an oscillation frequency of the transmitter on the basis of a transmitter ringdown signal, finding an oscillation frequency of the receiver on the basis of a receiver ringdown signal, performing a frequency tuning respectively on the transmitter and the receiver on the basis of said respective oscillation frequencies, then sweeping an input frequ
Type:
Application
Filed:
January 5, 2023
Publication date:
July 13, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Francesca CARMINATI, Marco PASSONI, Beatrice ROSSI, Diego CARRERA, Pasqualina FRAGNETO
Abstract: A method of operating a gas sensing device is described. The method includes receiving a signal indicative of a value of resistance of a gas sensing element, processing the signal received to compute a value of a gas concentration, performing a comparison of the value of gas concentration to a threshold, and, based on the outcome of a diagnosis procedure, setting the device to an alert signal issue state as a function of the outcome of the comparison. The diagnosis procedure includes computing a set of parameters indicative of the state of the gas sensor circuit, and classifying the gas sensor circuit in one of a first, a second and a third class based on the parameters.
Abstract: A probe device includes an optical device including at least one of a photodetector or a first light source. A cover structure is included and is arranged in front of the optical device. The cover structure includes an electrode which contacts, in use, a body tissue.
Type:
Grant
Filed:
March 19, 2020
Date of Patent:
July 11, 2023
Assignee:
STMicroelectronics S.r.l.
Inventors:
Vincenzo Vinciguerra, Piero Fallica, Mario Francesco Romeo
Abstract: A normally-off HEMT transistor includes a heterostructure including a channel layer and a barrier layer on the channel layer; a 2DEG layer in the heterostructure; an insulation layer in contact with a first region of the barrier layer; and a gate electrode through the whole thickness of the insulation layer, terminating in contact with a second region of the barrier layer. The barrier layer and the insulation layer have a mismatch of the lattice constant (“lattice mismatch”), which generates a mechanical stress solely in the first region of the barrier layer, giving rise to a first concentration of electrons in a first portion of the two-dimensional conduction channel which is under the first region of the barrier layer which is greater than a second concentration of electrons in a second portion of the two-dimensional conduction channel which is under the second region of the barrier layer.
Type:
Grant
Filed:
May 17, 2021
Date of Patent:
July 11, 2023
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Ferdinando Iucolano, Giuseppe Greco, Fabrizio Roccaforte
Abstract: A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
Type:
Grant
Filed:
December 15, 2020
Date of Patent:
July 11, 2023
Assignee:
STMicroelectronics S.r.l.
Inventors:
Jean Marie Darmanin, Carlo Valzasina, Alessandro Tocchio, Gabriele Gattere
Abstract: A DC-DC boost converter includes an inductor coupled between an input voltage and an input node, a diode coupled between the input node and an output node, and an output capacitor coupled between the output node and ground such that an output voltage is formed across the output capacitor. A switch selectively couples the input node to ground in response to a drive signal. Control loop circuitry includes an error amplifier to generate an analog error voltage based upon a comparison of a feedback voltage to a reference voltage, the feedback voltage being indicative of the output voltage, a quantizer to quantize the analog error voltage to produce a digital error signal, and a drive voltage generation circuit to generate the drive signal as having a duty cycle based upon the digital error signal.
Type:
Application
Filed:
December 30, 2021
Publication date:
July 6, 2023
Applicant:
STMicroelectronics S.r.l.
Inventors:
Andrea BARBIERI, Aldo VIDONI, Marco ZAMPROGNO
Abstract: A system-on-chip includes a process-voltage-temperature (PVT) sensor with a filter circuit that initiates a patterned digital signal and propagates the patterned digital signal in a manner responsive to variations in semiconductor material, operating supply voltage and operating temperature of the system-on-chip. A digital comparison circuit compares the initiated patterned digital signal and the propagated patterned digital signal. A warning signal is generated in response to the comparison where there is a detection of discrepancy between the initiated patterned digital signal and the propagated patterned digital signal.
Abstract: Provided is an analog to digital converter configured to receive a continuous input signal. The analog to digital converter includes an integrating block, comprising at least an integrating stage, which output is coupled to a flash analog to digital converter. The analog to digital converter apparatus includes a feedback path coupled to the output of said flash analog to digital converter. The feedback path includes at least a digital to analog conversion block which output is compared at least to the input signal to obtain an error signal which is brought as input to said integrating block. A control block is configured to perform control comprising at least a digital integration, is coupled between the output of said flash analog to digital converter and said feedback path.
Type:
Application
Filed:
December 21, 2022
Publication date:
July 6, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Vanni POLETTO, Nicola ROGLEDI, Antonio Davide LEONE
Abstract: A leadframe has a die pad area and an outer layer of a first metal having a first oxidation potential. The leadframe is placed in contact with a solution containing a second metal having a second oxidation potential, the second oxidation potential being more negative than the first oxidation potential. Radiation energy is then applied to the die pad area of the leadframe contacted with the solution to cause a local increase in temperature of the leadframe. As a result of the temperature increase, a layer of said second metal is selectively provided at the die pad area of the leadframe by a galvanic displacement reaction. An oxidation of the outer layer of the leadframe is then performed to provide an enhancing layer which counters device package delamination.
Abstract: A supply node receives supply voltage and an output node provides a regulated output voltage to a load. A switching transistor is coupled between the supply and output nodes. The switching transistor is controlled by a drive signal generated by a control circuit to control switching activity. The control circuit includes circuitry to sense a feedback voltage indicative of the regulated output voltage and a comparator generating a comparison logic signal dependent on a comparison of the feedback voltage to a reference. A logic circuit generates a skip signal in response to the comparison logic signal. A counter generates a termination signal. Signal processing circuitry controls the switching activity by asserting the drive signal as a function of the skip signal and the termination signal.
Type:
Application
Filed:
December 28, 2022
Publication date:
July 6, 2023
Applicant:
STMicroelectronics S.r.l.
Inventors:
Alessandro BERTOLINI, Alberto CATTANI, Alessandro GASPARINI
Abstract: The present disclosure is directed to a solid body for a biomedical device, wearable by a patient and configured to acquire one or more physiological parameters of the patient. The solid body includes a first rigid portion, a second rigid portion and a connection portion of flexible type which couples the first and the second rigid portions to each other; and a control circuitry accommodated inside the first and/or the second rigid portions. The connection portion is interposed between the first and the second rigid portions, is integral therewith and is deformable so as to allow a relative movement of the first and the second rigid portions. The first and the second rigid portions are physically couplable to a first and to a second ECG electrode to couple the solid body to the torso of the patient.
Abstract: An isolated driver device comprises a first semiconductor die and a second semiconductor die galvanically isolated from each other. The second semiconductor die includes a signal modulator circuit configured to modulate a carrier signal to produce a modulated signal encoding information. A galvanically isolated communication channel implemented in the first semiconductor die and the second semiconductor die is configured to transmit the modulated signal from the second semiconductor die to the first semiconductor die.
Abstract: An embodiment electronic system comprises a first device, a second device and a clock generator circuit. The clock generator circuit is configured to provide a clock signal having a selectable frequency. The first device comprises a first processing circuit having coupled therewith a first Ethernet interface, and the second electronic device comprises a second processing circuit having coupled therewith a second Ethernet interface. At least one of the first device and the second device is configured to determine a frequency of the clock signal as a function of an operating parameter of the first device and/or of the second device and/or as a function of a parameter of the frames exchanged between the first device and the second device, and to act on the clock generator circuit to operate the clock generator circuit at the frequency.
Abstract: A MEMS device having a body with a first and a second surface, a first portion and a second portion. The MEMS device further has a cavity extending in the body from the second surface; a deformable portion between the first surface and the cavity; and a piezoelectric actuator arranged on the first surface, on the deformable portion. The deformable portion has a first region with a first thickness and a second region with a second thickness greater than the first thickness. The second region is adjacent to the first region and to the first portion of the body.