Abstract: A image sensor includes a semiconductor substrate with a photosensitive region. Metallization layers are stacked over the semiconductor substrate. Each metallization layer includes an etch stop layer and a dielectric layer on the etch stop layer. At least one metallization layer includes one or more microlenses positioned over the photosensitive region. The one or more microlenses are integrally formed by the etch stop layer.
Abstract: An integrated circuit includes an interconnection part with a via level situated between a lower metallization level and an upper metallization level. The lower metallization level is covered by an insulating encapsulation layer. An electrical discontinuity between a first via of the via level and a first metal track of the lower metallization level is provided at the level of the insulating encapsulation layer. The electrical discontinuity is formed prior to formation of any via of the via level and prior to any metal track of the upper metallization level. The electrical discontinuity may comprise: a portion of an additional insulating layer extending over the insulating encapsulation layer; a portion of the insulating encapsulation layer; or an insulating oxide on a top surface of the first metal track.
Type:
Application
Filed:
May 16, 2017
Publication date:
May 24, 2018
Applicant:
STMicroelectronics (Rousset) SAS
Inventors:
Christian Rivero, Pascal Fornara, Guilhem Bouton, Mathieu Lisart
Abstract: A heat-transferring device is formed by a stack that includes at least one heat-conducting layer and at least one heat-absorbing layer. The at least one heat-conducting layer has at least one heat-collecting section placed facing a heat source and at least one heat-evacuating section placed facing a heat sink. The at least one heat-absorbing layer includes a phase-change material. One face of the at least one heat-absorbing layer is adjoined to at least one portion of at least one face of the heat-conducting layer.
Type:
Application
Filed:
November 2, 2017
Publication date:
May 24, 2018
Applicants:
STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA
Inventors:
Rafael Augusto Prieto Herrera, Jean-Philippe Colonna, Perceval Coudrain
Abstract: A method can be used for writing in a memory location of the electrically-erasable and programmable memory type. The memory location includes a first memory cell with a first transistor having a first gate dielectric underlying a first floating gate and a second memory cell with a second transistor having a second gate dielectric underlying a second floating gate that is connected to the first floating gate. In a first writing phase, an identical tunnel effect is implemented through the first gate dielectric and the second gate dielectric. In a second writing phase, a voltage across the first gate dielectric but not the second gate dielectric is increased.
Abstract: An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
Type:
Grant
Filed:
April 20, 2016
Date of Patent:
May 22, 2018
Assignee:
STMicroelectronics (Crolles 2) SAS
Inventors:
Fausto Piazza, Sebastien Lagrasta, Raul Andres Bianchi, Simon Jeannot
Abstract: A switching converter includes a first electronic switch and a second electronic switch and respective drive circuits for switching on and switching off alternatively the first and second electronic switches. The drive circuits have a supply line for supplying to them a supply voltage. At least one of the drive circuits has, coupled to it, a capacitor for storing the supply voltage. An electronic-switching circuit is provided for selectively disconnecting the drive circuit from the supply line when the electronic switch driven thereby is switched off. In this mode, the drive circuit is supplied by the voltage stored on the capacitor.
Type:
Grant
Filed:
April 27, 2016
Date of Patent:
May 22, 2018
Assignee:
STMicroelectronics S.r.l.
Inventors:
Agatino Antonino Alessandro, Carmelo Alberto Santagati
Abstract: A IEEE 802.11 Wireless Local Area Network (WLAN) system of an access point (AP) and one or more stations (STAs) reduces power consumption and increases battery life of power efficient low power STAs by decreasing the amount of time that a power efficient low power STA remains in an awake state. After indicating power efficient low power operation during association with an AP supporting such operation, the power efficient low power STA may enter the doze state from the time that the power efficient low power STA sends a PS-Poll until the power efficient low power STA receives the buffered DATA frame from the AP. While implementing the power efficient PS-Poll method, the AP can send the buffered DATA frame to the STA SIFS after the AP sends an ACK to the received PS-Poll from the STA.
Abstract: An electronic device disclosed herein includes a linear output stage configured to generate an output voltage to an output node as a function of an input voltage, and a buck output stage configured to generate the output voltage to the output node as a function of the input voltage. Control circuitry is configured to enable the linear output stage and disable the buck output stage if a current demanded by a load to maintain the output voltage at a desired level is less than a limit current, and enable the buck output stage and disable the linear output stage a delay period of time after enabling the buck output stage, if the current demanded by the load to maintain the output voltage at the desired level is greater than the limit current.
Abstract: An optoelectronic device for detecting radiation, comprising a semiconductor body including: a cathode region delimited by a front surface, having a first conductivity type and including a bottom layer; an anode region having a second conductivity type, which extends in the cathode region starting from the front surface and forms a surface junction with the cathode region; and a buried region having the second conductivity type, which extends within the cathode region and forms a buried junction with the bottom layer. The cathode region further includes a buffer layer, which is arranged underneath the anode region and overlies, in direct contact, the bottom layer. The buffer layer has a doping level higher than the doping level of the bottom layer.
Abstract: A wireless local area network system establishes a PASSPOINT™ connection between a mobile station and a hotspot using an enhanced single SSID method or an enhanced dual SSID method. In the dual SSID method, an access point associates and authenticates a mobile device to a secondary SSID of the access point during enrollment and provisioning. After enrollment, the access point authenticates the mobile station to a primary SSID of the access point using the credential that the mobile station received from an online sign-up (“OSU”) server in connection with the secondary SSID. In the single SSID method, an access point performs two levels of authentication. During authentication, communications are limited to an 802.1x controlled port running on the mobile station and access point. After a first authentication, communications between the OSU server and the mobile station are unblocked. After the second authentication, all traffic from the mobile station is unblocked.
Abstract: An address decoder circuit is designed to address and bias memory cells of a memory array of a non-volatile memory device. The address decoder circuit includes a charge-pump stage configured to generate a boosted negative voltage. A control stage is operatively coupled to the charge-pump stage for controlling switching on/off thereof as a function of a configuration signal that determines the value of the boosted negative voltage. A decoding stage is configured so as to decode address signals received at its input and generate biasing signals for addressing and biasing the memory cells. A negative voltage management module has a regulator stage, designed to receive the boosted negative voltage from the charge-pump stage and generate a regulated negative voltage for the decoding stage, having a lower ripple as compared to the boosted negative voltage generated by the charge-pump stage.
Type:
Grant
Filed:
April 3, 2017
Date of Patent:
May 22, 2018
Assignee:
STMicroelectronics S.r.l.
Inventors:
Fabio Enrico Carlo Disegni, Giuseppe Castagna, Maurizio Francesco Perroni
Abstract: An integrated MOS transistor is formed in a substrate. The transistor includes a gate region buried in a trench of the substrate. The gate region is surrounded by a dielectric region covering internal walls of the trench. A source region and drain region are situated in the substrate on opposite sides of the trench. The dielectric region includes an upper dielectric zone situated at least partially between an upper part of the gate region and the source and drain regions. The dielectric region further includes a lower dielectric zone that is less thick than the upper dielectric zone and is situated between a lower part of the gate region and the substrate.
Abstract: A microfluidic-based sensor, comprising: a semiconductor body, having a first and a second side opposite to one another in a direction; a buried channel, extending within the semiconductor body; a structural layer, of dielectric or insulating material, formed over the first side of the semiconductor body at least partially suspended above the buried channel; and a first thermocouple element, including a first strip, of a first electrical conductive material, and a second strip, of a second electrical conductive material different from the first electrical conductive material, electrically coupled to the first strip. The first thermocouple element is buried in the structural layer and partially extends over the buried channel at a first location. A corresponding manufacturing method is disclosed.
Type:
Grant
Filed:
June 18, 2014
Date of Patent:
May 22, 2018
Assignees:
STMICROELECTRONICS S.R.L., STMICROELECTRONICS ASIA PACIFIC PTE LTD
Abstract: An image sensor device may include an array of image sensing pixels with adjacent image sensing pixels being arranged in macropixel, and a processor coupled to the array of image sensing pixels. The processor may be configured to receive pixel signals from the array of image sensing pixels, and arrange the received pixel signals into macropixel signal sets for respective macropixels. The processor may be configured to perform, in parallel, an image enhancement operation on the received pixel signals for each macropixel signal set to generate enhanced macropixel signals, and transmit the enhanced macropixel signals.
Abstract: A micro-electro-mechanical pressure sensor device, formed by a cap region and by a sensor region of semiconductor material. An air gap extends between the sensor region and the cap region; a buried cavity extends underneath the air gap, in the sensor region, and delimits a membrane at the bottom. A through trench extends within the sensor region and laterally delimits a sensitive portion housing the membrane, a supporting portion, and a spring portion, the spring portion connecting the sensitive portion to the supporting portion. A channel extends within the spring portion and connects the buried cavity to a face of the second region. The first air gap is fluidically connected to the outside of the device, and the buried cavity is isolated from the outside via a sealing region arranged between the sensor region and the cap region.
Type:
Grant
Filed:
September 26, 2016
Date of Patent:
May 22, 2018
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Enri Duqi, Sebastiano Conti, Lorenzo Baldo, Flavio Francesco Villa
Abstract: A driving apparatus configured to drive a light emitting device includes a driving current source module operable to supply current to the light emitting device via a node during operation. A protection module coupled to the node and the driving current source module selectively injects current to the node during operation. The driving current source module is controlled based on a detection result of a voltage on the node.
Abstract: An analog multiplexer includes inputs and one output. A switching circuit is coupled between each input and the output. Each switching circuit includes an NMOS switching module, having an on state and an off state, and a control module supplied by a first supply voltage and operating to reduce leakage currents of the NMOS switching module when in the off state. The control module further operates to make the first NMOS switching module bidirectional irrespective of voltages present at the input and at the output.
Abstract: A method for making a semiconductor device may include forming a first dielectric layer above a semiconductor substrate, forming a first trench in the first dielectric layer, filling the first trench with electrically conductive material, removing upper portions of the electrically conductive material to define a lower conductive member with a recess thereabove, forming a filler dielectric material in the recess to define a second trench. The method may further include filling the second trench with electrically conductive material to define an upper conductive member, forming a second dielectric layer over the first dielectric layer and upper conductive member, forming a first via through the second dielectric layer and underlying filler dielectric material to the lower conductive member, and forming a second via through the second dielectric layer to the upper conductive member.
Abstract: A method includes digital/analog conversion of a digital signal modulated by information to provide a modulated initial analog signal having a crest factor greater than one, and amplification of the initial analog signal to provide an amplified modulated signal. A modulated channel analog signal derived from the modulated amplified analog signal is transmitted over a communications channel, with impedance of the communications channel varying during the transmission. The method further includes at least one determination during the transmission of a peak-clipping rate of the amplified analog signal over at least one time interval, and an adjustment of a level of the initial analog signal as a function of the determined peak-clipping rate.
Abstract: A galvanic isolation system includes a first isolation barrier and a second isolation barrier. The first isolation barrier includes a transformer. The second isolation barrier includes an inductive circuit connected to a secondary winding of the transformer. The first and the second isolation barriers are coupled to form an LC resonant network.
Type:
Grant
Filed:
May 24, 2016
Date of Patent:
May 22, 2018
Assignee:
STMicroelectronics S.r.l.
Inventors:
Nunzio Spina, Egidio Ragonese, Giuseppe Palmisano, Nunzio Greco