Abstract: A manufacturing method of an axial air moving device. A model of the axial air moving device includes a hub and blades. The axial projection of blades is partially overlapped in the axial direction of the hub. The model of the axial air moving device is parted in the axis direction of the hub. The blades are divided into multiple parting models non-overlapped in the axial projection. A mold manufacture using axial demolding and an injection molding are performed and the parting models are connected. Therefore, the axial air moving device with overlapped blades and better fluid performance is achieved through the axial demolding method.
Abstract: This disclosure is related to a thin type counter-rotating axial air moving device. The ratio of the front hub diameter to the front blade diameter is about 0.3 to about 0.85. The front average pitch angle of the front blades is greater than about 46 degrees. The ratio of the rear hub diameter to the rear blade diameter is about 0.3 to about 0.85. The rear average pitch angle of the rear blades is less than about 38 degrees. The ratio of the total thickness to the greater one between the front blade diameter and the rear blade diameter is less than or equal to about 0.75.
Abstract: A counter-rotating axial air moving device includes a front rotor and a rear rotor. The front rotor includes a front hub and a plurality of front blades, and the number of the front blades is equal to or greater than 7 and equal to or less than 11. The rear rotor is disposed on the downstream side of the front rotor. The rear rotor includes a rear hub and a plurality of rear blades, and the number of the rear blades is equal to or greater than 6 and equal to or less than 10. The front rotor and the rear rotor are stacked with each other with a total thickness and a diameter. The ratio of the total thickness to the diameter is equal to or more than 0.91 and equal to or less than 1.5.
Abstract: A counter rotating axial air moving device structure is disclosed. The rear rotor includes a rear hub and rear blades, and a pitch angle of each of the rear blades increases gradually in a direction away from the rear hub. The front rotor, the rear rotor and the stator component are stacked with each other. The ratio of the thickness to the diameter is equal to or greater than about 0.25 and equal to or less than about 0.8. Therefore, a better performance curve is obtained, and the vibration and noise are avoided.
Abstract: This disclosure provides an air moving device with blade tip of variable curvature. The axial air moving device includes a hub and a plurality of blades. The blades are connected with the hub, and each blade is configured by stacking multiple wing sections continuously. Each blade includes a blade root and a blade tip. The span position of the blade at the blade root is defined as 0, and at the blade tip is defined as 1. The blade angle is defined by the nose-tail line of the wing section and the rotation direction of the axial air moving device. The blade angle of the wing section at the blade tip of the blade is at least 10 degrees less than the blade angle of the wing section at the span position of 0.8 of the blade.
Abstract: The air moving device includes a rotor and a stator. The quantity of the rotor blades is not less than 5 and not greater than 12. The average blade angle of rotor blades is not less than 45 degrees and is not greater than 64 degrees. The ratio of the hub diameter to the rotor diameter is not less than 0.4 and not greater than 0.79. The quantity of the stator blades is not less than 6 and not greater than 23. The average blade angle of stator blades is not less than 45 degrees and not greater than 70 degrees. The ratio of the total thickness of the air moving device to the rotor diameter is not less than 0.76 and not greater than 1.7. The ratio of the stator axial thickness to the rotor axial thickness is not less than 0.28 and not greater than 0.65.