Patents Assigned to Storagenergy Technologies, Inc.
  • Patent number: 11613475
    Abstract: Systems and methods for direct recycling and upcycling of spent cathode materials using Flame-Assisted Spray Pyrolysis Technology (FAST). In illustrative embodiments, cathode layers are separated and collected from spent battery cells. The cathode laminate is ground to a powdered form and treated to remove contaminants by sifting into a hot stream of air which heats the powders, burning off contaminants. After cooling and particle collection, the powders may be dispersed into leaching solution to dissolve metal oxides and create an acid metal solution or ground into nano-sized primary particles and mixed with dispersing liquids to form a solution. The solution may be mixed with glycerol and additional metal salts to create a final precursor solution, which may undergo spray pyrolysis followed by drying and calcination to create cathode materials with high consistency and repeatability, or mixed with an alkaline metal salt solution and undergo electrodeposition to recover desired metal salts.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: March 28, 2023
    Assignee: STORAGENERGY TECHNOLOGIES INC.
    Inventors: Jinyun Liao, Junhua Song, Nick Iacopino, Feng Zhao
  • Patent number: 11492267
    Abstract: Systems and methods for direct recycling and upcycling of spent cathode materials using Flame-Assisted Spray Pyrolysis Technology (FAST). In illustrative embodiments, cathode layers are separated and collected from spent battery cells. The cathode laminate is ground to a powdered form and treated to remove contaminants by sifting into a hot stream of air which heats the powders, burning off contaminants. After cooling and particle collection, the powders may be dispersed into leaching solution to dissolve metal oxides and create an acid metal solution or ground into nano-sized primary particles and mixed with dispersing liquids to form a solution. The solution may be mixed with glycerol and additional metal salts to create a final precursor solution, which may undergo spray pyrolysis followed by drying and calcination to create cathode materials with high consistency and repeatability, or mixed with an alkaline metal salt solution and undergo electrodeposition to recover desired metal salts.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: November 8, 2022
    Assignee: Storagenergy Technologies Inc.
    Inventors: Jinyun Liao, Junhua Song, Nick Iacopino, Feng Zhao
  • Publication number: 20220242747
    Abstract: Systems and methods for direct recycling and upcycling of spent cathode materials using Flame-Assisted Spray Pyrolysis Technology (FAST). In illustrative embodiments, cathode layers are separated and collected from spent battery cells. The cathode laminate is ground to a powdered form and treated to remove contaminants by sifting into a hot stream of air which heats the powders, burning off contaminants. After cooling and particle collection, the powders may be dispersed into leaching solution to dissolve metal oxides and create an acid metal solution or ground into nano-sized primary particles and mixed with dispersing liquids to form a solution. The solution may be mixed with glycerol and additional metal salts to create a final precursor solution, which may undergo spray pyrolysis followed by drying and calcination to create cathode materials with high consistency and repeatability, or mixed with an alkaline metal salt solution and undergo electrodeposition to recover desired metal salts.
    Type: Application
    Filed: February 2, 2022
    Publication date: August 4, 2022
    Applicant: Storagenergy Technologies Inc.
    Inventors: Jinyun Liao, Junhua Song, Nick Iacopino, Feng Zhao
  • Publication number: 20220205107
    Abstract: Systems and methods for the treatment of materials with an alkali metal such as lithium for the manufacturing of batteries and capacitors. In one illustrative embodiment, a liquid lithium composition may be formed by dissolving metallic lithium in a solution that includes a suitable organic agent, a suitable solvent and suitable film forming agent. Each component of the solution may be present in an effective amount to perform its desired function. The lithium may be dissolved into the solution to obtain a lithium to organic agent molar ratio of from 1:1 to 10:1. The liquid lithium composition may then be dispensed onto a suitable substrate material and allowed to remain thereon for a suitable time for a prelithiation reaction to proceed, followed by drying. Dispensing may be performed by spraying the liquid lithium composition and drying may be performed at a relatively low temperature and a reduced pressure.
    Type: Application
    Filed: December 30, 2021
    Publication date: June 30, 2022
    Applicant: Storagenergy Technologies Inc.
    Inventors: Junhua Song, Feng Zhao, Jinyun Liao
  • Patent number: 11302961
    Abstract: Described herein are semi-solid polymer electrolytes (SSPEs) based on a polymer backbone incorporating a flame-retardant crosslinker and fluorinated counterions that are useful in the production of high energy rechargeable lithium metal batteries. The described SSPEs are not liquid electrolytes, are not solid state electrolytes (SSEs), and are differentiated from standard state-of-the-art gel polymer electrolytes (GPEs). The described SSPEs are formed from a first solvent, an optional second solvent, a crosslinker, a lithium salt, and an initiator. The unique coordination structure of the described SSPEs yields non-flammable, low-volatility, non-vaporizable, high Coulombic efficiency (CE), stable solid-electrolyte-interphase (SEI)-forming electrochemical devices, such as lithium metal rechargeable batteries, that are easily adaptable to existing mass-production lines.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: April 12, 2022
    Assignee: Storagenergy Technologies, Inc.
    Inventors: Junhua Song, Feng Zhao, Jinyun Liao, Rui Zhang, Joel Kirner